
A P2P Resource Discovery System Based on a Forest of Trees∗

Moreno Marzolla2 Matteo Mordacchini1,2 Salvatore Orlando1,3

1 Dip. di Informatica, Università Ca’ Foscari di Venezia, via Torino 155, 30172 Mestre, Italy
2 INFN Sezione di Padova, via Marzolo 8, 35100 Padova, Italy

3 ISTI Area della Ricerca CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{moreno.marzolla|matteo.mordacchini}@pd.infn.it, orlando@dsi.unive.it

Abstract

The convergence of the Grid and Peer-to-Peer (P2P)
worlds has led to many solutions that try to efficiently solve
the problem of resource discovery on Grids. Some of these
solutions are extensions of P2P DHT-based networks. We
believe that these systems are not flexible enough in the case
the data present in the network is very dynamic, i.e. the data
values change very frequently over time. This a very com-
mon case for some kind of data in typical Grid systems, like
CPU loads, queue occupation, etc. In this paper we present
a variation of a previous work based on a tree-shaped P2P
overlay network. The system uses Routing Indexes to effi-
ciently route queries and update messages in the presence
of highly variable data. The new system is based on a two-
level hierarchical network topology, where tree topologies
must be only maintained at the lower level of the hierarchy.
The main aim of this new organization is to achieve a sim-
pler maintenance of the overall P2P graph topology. This
is reached at the cost of some imprecision in the routing
indexes built at the upper level of the graph hierarchy.

1. Introduction and Related Works

The convergence of Grid and P2P systems has led to the
development of many solutions that try to combine the ad-
vantages of the two worlds. One of the fields in which this
convergence seems to give the most promising results is re-
source discovery. Many solutions described in the literature
are based on Distributed Hash Tables (DHT), like [9], [7]
and [8]. These systems organize the peers into overlay net-
works and create distributed indexes associated with the re-
sources shared among the network, in order to let users to
efficiently retrieve them. The above-mentioned systems al-

∗This work has been partially supported by the European Research Net-
work on Foundations, Software Infrastructures and Applications for large
scale distributed, GRID and Peer-to-Peer Technologies (CoreGRID) and
the EU Project EGEE (Enabling Grids for E-sciencE)

low exact queries only, while one of the common way to re-
trieve data on Grids is through multi-attribute range queries.
Some authors have proposed extension of the cited algo-
rithms in order to adapt these DHT systems to the Grid
needs [3] [1] [2]. Despite the good results achieved by this
kind of networks, they may not represent the best solution
in presence of dynamic data, i.e. data whose value change
frequently and unpredictably over time. The main problem
with DHT-based networks is related to the fact that each
change in the resource values requires to re-index the items
whose content have changed.

We believe that less structured networks are more suit-
able to deal with dynamic data. In a previous work [6] we
proposed a system based on Routing Indexes (RI) [4] in or-
der to find a good tradeoff between an efficient query rout-
ing scheme and a good update mechanism. In this paper we
present a variation of that system based on a new topology
organization of the peers. This new organization aims to
ease the maintenance of the network while preserving the
good features of the old topology organization, based on a
tree-shaped P2P overlay network. To avoid the cost and dif-
ficulties in maintaining a very large tree topology, in this
paper we propose a two-level hierarchical network topol-
ogy, where tree topologies must be only maintained at the
lower level of the hierarchy. The upper level is instead un-
structured. This fact may introduce some imprecision in the
indexing system. Our idea is to tradeoff a simpler mainte-
nance of the overall P2P graph topology, with the introduc-
tion of some imprecision in the routing indexes built at the
upper level of the graph hierarchy.

The rest of the paper is organized as follows: in Section 2
we give a detailed description of our system; in Section 3 we
present some simulation results showing the performance
of the proposed algorithms; finally, conclusions and future
works are illustrated in Section 4

2. System Overview

We first describe the assumptions we make through the
rest of the paper. We consider a Grid system composed
of N Resource Brokers (RB). Each RB holds a set of re-
sources, called thelocal repository. Each resource is char-
acterized by a set of attributes. For each resourceR, we de-
note withAttList(R) the set of all attribute names defined
for R. For each attributeA ∈ AttList(R), R[A] denotes the
value of attributeA for resourceR. As an example if we
consider a resource of type “Computing Element”, then at-
tributes for such resource may be “number of processors”,
“available memory”, “number of queued jobs” and so on.
We suppose that resources are dynamic, in the sense that
the value of the attributes may change unpredictably over
time. Users of the Grid need to query the system in order
to locate the most suitable resources that are required to ex-
ecute their jobs. We assume that users specify their needs
by means of partial range queries generated by the follow-
ing grammar (we assume that the usual operator precedence
rules apply):

Q := Q and Q | Q or Q | v1 ≤ A ≤ v2

A := A1 | . . . | AM

We consider partial range queries over subsets of the at-
tributes, that is, boolean compositions of range predicates
v1 ≤ A ≤ v2. Multiple conditions over different attributes
are possible. Conditions such asA ≤ v2, A ≥ v1 and
A = v1 are special cases ofv1 ≤ A ≤ v2 which can be
expressed by settingv1 = −∞, v2 = +∞ andv1 = v2

respectively.
In order to find a good tradeoff between an efficient

search mechanism and the need for dealing with dynamic
data values, we proposed in [6] to organize the RBs into
a P2P tree-structured overlay network, with routing infor-
mation associated with links in the network. Despite its
good performance properties, this structure has two main
drawbacks. First, the topology may become hard to main-
tain when nodes join and leave the network, especially in
the case we want the tree to remain (almost) balanced. Sec-
ond, the nodes close to the tree root may become over-
loaded of routing requests. For these reasons, in this pa-
per we propose to partition the network into a set of small
trees, i.e. a forest. Each peerP belongs to a single tree,
which we call group of P . The nodes that have a link
with P are of two types: (1) nodes of same group, i.e.lo-
cal neighbors, denoted withLNb(P); (2) nodes that be-
long to other groups, i.e.external neighbors, denoted with
ENb(P). The set of all the peers connected withP is called
the neighborhoodof P and is denoted withNb(P), i.e.
Nb(P) = LNb(P)∪ENb(P). In order to have a connected
network we impose that for each group of nodes, at least a
node of the group must have an external neighbor. An ex-
ample of a network of this type is shown in Fig. 1. For sake

of simplicity, the figure presents avertex clusteringof the
network, i.e. only connections between groups are drawn.

Figure 1. An example of the new network or-
ganization

We now show how routing information are associated
with links between peers and how the network structure is
exploited to manage query routing requests and update mes-
sages.

2.1. Bitmap Indexes

Each peerP maintains a summary of all informations of
its local resources as follows. If the domain of attribute
A is the interval[a, b], we selectk + 1 division points
a = a0 < a1 < . . . < ak = b such that[a, b] is parti-
tioned intok disjoint intervals[ai, ai+1), i = 0, 1, . . . k−1.
Given an attributeA we encode the valueD[A] with ak bit
binary vectorBitIdx(D[A]) = (b0, b1, . . . , bk−1), such that
bi = 1 if and only if D[A] ∈ [ai, ai+1). Both the parameter
k (number of bits of the bit vector) and the division points
a0, a1, . . . ak may be different for each attribute type. The
final local bitmap index for an attributeA on peerP is ob-
tained by a bitwiseOR operation between the indexes of all
data itemsD of P :

BitIdx(P, A) ≡
∨

D∈Data(P)

BitIdx(D[A]) (1)

whereData(P) is the set of all the resources ofP . Each
peerPi also maintains a condensed representation of the
resources which can be found by following its outgoing
links. In particular, givenPj ∈ Nb(Pi), let Gj be the
group ofPj andTGj

be the internal tree of groupGj . Let
TGj

(Pi → Pj) be a subtree ofTGj
rooted onPj such that

TGj
(Pi → Pj) ⊆ TGj

\{Pi}. For each data attributeA, Pi

associates with the edge(Pi, Pj) the following quantity:

LinkBitIdx(Pi → Pj , A) ≡
∨

P∈TGj
(Pi→Pj)

BitIdx(P, A) (2)

Note that, at this level, we do not need to make distinctions
between internal or external links. The result of this opera-
tion is that theLinkBitIdx(·) index gives toPi a description
of the data items that can be found in the portion of the

group tree rooted on neighborPj , if Pj is in the same group
of Pi, or a description of the entire set of resources in the
external groupGj .

2.2. Query Routing

We assume that queries originate from any nodeP in the
system. Upon receiving a query message, a node checks
if some of its resources match the query; then, it forwards
the query to its neighbors. Queries are not necessarily
routed to all neighbors but only to a selected set of them.
The selection phase is driven by the routing indexes as-
sociated with each outgoing link. According to Eq.(2),
each peerP maintains a bit vectorLinkBitIdx(P → P ′, A),
for each nodeP ′ ∈ Nb(P). WhenP receives a query
Q := v1 ≤ A ≤ v2 from a neighborPin, it forwards it
to neighborPout ∈ Nb(P) − Pin only if a match is likely
to be present inT (P → Pout). To this end, the result of
the logicalAND between the bitmap representation of the
query range andLinkBitIdx(P → Pout, A) must be a non-
zero vector. The routing scheme described so far may not
be enough for an efficient routing of queries. Note that the
outer graph, associated with the inter-group connections,is
unstructured. Therefore, it may also include loops among
the (super) nodes. Let us consider the situations depicted in
Fig. 2. For the sake of simplicity, only links between the
presented nodes are shown. In the first case,P1, P2 andP3

have at least a resource matching ueryQ .Let us suppose
theP1 receivesQ. After P1 has detected the local match, it
forwards the query to its neighbors. NodeP2 forwards the
query toP3. P3 will then send the query back toP1, that,
in turn, will forward it again toP2. The final result is an
infinite loop. In order to avoid loops, we need to improve

(a) (b)

Figure 2. Examples of loops (a) and multiple
resolutions of the same query (b)

the routing scheme. We add a further information to the
query message, as shown in Fig. 3. We add the list of all the
IDs that are associated with the groups of nodes that were
already traversed by the query. LetGQ be such a list. A
peerP that receives queryQ adds its own group ID toGQ,

Figure 3. Information associated with a query

if it is not already present. Then it forwardsQ to the exter-
nal neighbors whose groups are not listed inGQ. Nothing
changes for the internal neighbors. This solution eliminate
cycles but does not completely eliminate the problem illus-
trated in Fig. 2(b). A queryQ is forwarded by nodeP1

to all nodesP2, P3 andP4 that match it. As can be seen,
nodeP3 receives the same query from nodeP2 and node
P4. The previously described mechanism avoids the forma-
tion of a loop but does not preventP3 from processing the
same query twice. For this reason we need to add to each
peerP a query cache, i.e. a cache that contains the latestm
query IDs received byP . If P receives a query whose ID is
already listed in its own query cache, it simply discards the
query, avoiding to process it twice.

2.3. Handling Updates

In this section we describe how the system deals with
updates. Suppose that peerP notes a change inD[A] for
a data itemD ∈ Data(P). Let vnew and vold be the
new and old values ofD[A], respectively. The first action
taken byP is to compute the bitmap representation ofvnew ,
BitIdx(vnew). If it is equal toBitIdx(vold), no other actions
are needed. Otherwise,P computes the newBitIdx(P, A).
Again, it may happen that the new index is the same as the
old one, and then no further actions are required. If the
new index differs from the previous one, an update mes-
sage is propagated in order to preserve the property defined
by Eq. 2. Update messages consists of the name of the at-
tribute whose value is changed, and its up-to-date bit vector
representation. The new bit vector is computed as follows:

LinkBitIdx(Pout → P, A) = BitIdx(P, A)∨

∨

P ′∈LNb(P)−Pout

LinkBitIdx(P → P ′, A)

 (3)

If Pout ∈ ENb(P), the index is computed over the all set of
P local neighbors and thus it represents a description of all
P ’s group resources. When a peer receives an update mes-
sage from an incoming internal connection, it updates bit
vector indexes according to Eq. 3 and sends them to inter-
nal and external neighbors, respectively. If a peer receives
an update message from an external link, it simply registers
the new index and does not perform any other action. It is
worth remarking that the update messages are not further
propagated once an external link is traversed.

3. Simulation

We performed simulation experiments in order to evalu-
ate the performances of the proposed P2P system. We im-
plemented a process-oriented simulation model of a set of
interacting peers using the C++ library described in [5]. We
analyze thesteady-state behaviorof the system using the
independent replicationapproach to compute performance
measures. For each simulation run we collect a fixed num-
ber (in our case, 200) of observations. The first 20% of
the observations is discarded, in order to remove the initial
transient. In the rest of this section we made the follow-
ing assumptions. The term “group size” means themaxi-
mum group size, while the minimum group size is calcu-
lated as the 20% of the maximum group size. The resource
densityp indicates the probability of each node to posses a
valid resource. Thus, the greaterp, the higher the number
of resources present in the network. Two nodes that be-
long to two different groups have a probabilityl to be con-
nected. Such links determined the degree of connectivity of
the groups of the network.

We now compare our previous algorithm and the new
topology organization described in this paper. We first an-
alyze the behavior of the system with respect to the query
propagation phase. In particular, we consider the span of a
query, i.e. the number of nodes receiving a query message,
either because they matched the query or they simply for-
warded it to their neighbors. The results are shown in Fig. 4.
The simulation was performed considering three different

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Q
u

er
y

S
p

an
(p

er
c.

o
fn

et
.

si
ze

)

Network Size (nb. of nodes)

Forest, p = 0.2
Single Tree, p = 0.2

Forest, p = 0.5
Single Tree, p = 0.5

Forest, p = 0.8
Single Tree, p = 0.8

Figure 4. Query Span for the old and new al-
gorithm, w.r.t. 3 different resource densities
(lower is better)

resource densities and a network with groups of fixed size
of 10 nodes. Moreover, we consider a random tree structure
for both the single tree and the internal group trees. As we
can see, the query span is proportional to the network size in
both cases. This is due to the fact that the resources present
in the network are also proportional to the number of nodes
in the system, under our experimental hypothesis. The two

algorithms have very similar performances, with the new
one behaving slightly better for lower values ofp. Other
two important indicators are the precision and the recall of
the two systems. In Fig. 5 we plot the precision achieved
with a resource densityp = 0.5 for both networks, a link
rate l = 0.01 and a group sizeg = 10 for the new net-
work. This latter solution performs slightly better than the
old one. But, as said in the previous sections, some impre-

0.85

0.875

0.9

0.925

0.95

0.975

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
re

ci
si

o
n

Network Size

Forest
Single Tree

Figure 5. Precision of the new and old sys-
tems (upper is better)

cision is introduced as a consequence of the new topology.
The imprecision is due to the inability of a node to forward
a query to some zones of the network where resources are
available. This may be caused by an inadequate connection
between groups in the network and a subsequent lack of in-
formation in the indexes. We analyzed the behavior of the
new system when the inter-group link ratel varies. It does
not influence the precision, since precision is more related
to the nature of our indexing method: as indexes represent
a condensed description of network resources, they influ-
ences the precision of the system, as stated in [6]. Thus,
the most relevant effect of the inter-group link rate is on re-
call. Fig. 6 highlights this fact. As can be seen, the smaller
the link probability, the worse the performances of the sys-
tem. This is the result we expected, given the considerations
above. We also analyze the update mechanism. In Fig. 7(a)
the two systems are compared, and the new system behaves
better. This is due to its group-based organization. In fact,
the radius of an update is mainly determined by the group
radius, as external nodes add only one more hop to the for-
warding process, as illustrated in section 2.3. This is con-
firmed by the results presented in Fig. 7(b). The behavior
of the system is analyzed with respect to three different re-
source densities. Resource density affects the results only
when the group size change; in the old system the update
radius depends mainly on the resource density.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

R
ec

al
l

Inter-group node connection rate

Figure 6. Recall for the new system, w.r.t.
inter-group connection rate (upper is better)

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U
p

d
at

e
R

ad
iu

s
(n

b.
o

fh
o

p
s)

Network size (nb. of nodes)

Single Tree
Forest

(a)

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

U
p

d
at

e
R

ad
iu

s
(n

b.
o

fh
o

p
s)

Group Max Size

p = 0.2
p = 0.5
p = 0.8

(b)

Figure 7. Update Radius of the two systems
w.r.t. network size (a) and of the new system
w.r.t. groups size (b) (lower is better)

4. Conclusions and Future Works

In this paper we presented a P2P network for a Grid In-
formation System designed to allow efficient discovery of
resources with the use of multi-attribute, range queries and
an effective handling of updates messages in the presence of
dynamic data. The system is based on a the organization of

peers within structured groups, while inter-group links fol-
low a non-structured approach. Query routing and limita-
tion of the flooding of updates are guaranteed by distributed
indexes based on a bit vector representation of resource val-
ues. The simulation results show the effectiveness of the
proposed approach.

We are currently anallyzing the behavior of the pro-
posed algorithm with different kinds of resource distribu-
tion. Moreover, we plan to investigate the efficiency of
the system when dealing with thetop-kqueries, instead of
queries that try to retrieve all the matching resources.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range queriesfor
grid information services. InP2P ’02: Proc. of the Second
Int. Conf. on Peer-to-Peer Computing, page 33, Washington,
DC, USA, 2002. IEEE Computer Society.

[2] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. InProc. ACM
SIGCOMM 2004 Conf. on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, pages
353–366. ACM Press, 2004.

[3] M. Cai, M. Frank, J. Chen, and P. Szekely. Maan: A multi-
attribute addressable network for grid information services. In
GRID ’03: Proc. of the 4th Int. Workshop on Grid Comput-
ing, page 184, Washington, DC, USA, 2003. IEEE Computer
Society.

[4] A. Crespo and H. Garcia-Molina. Routing indices for peer-
to-peer systems. InICDCS ’02: Proc. of the 22nd Int. Conf.
on Distributed Computing Systems (ICDCS’02), pages 23–33,
Washington, DC, USA, 2002. IEEE Computer Society.

[5] M. Marzolla. libcppsim: a simula-like, portable pro-
cessoriented simulation library in c++. InG. Horton, edi-
tor, Proc. ESM04, the 18th European Simulation Multicon-
ference, pages 222–227, Magdeburg, Germany, June 13-16,
2004. SCS Press.

[6] M. Marzolla, M. Mordacchini, and S. Orlando. Resource dis-
covery in a dynamic grid environment. InProc. of DEXA
Workshops 2005, pages 356–360, Copenhagen, Danemark,
August 22–26, 2005. IEEE Computer Society.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proc. SIGCOMM ’01, pages 161–172, New York, NY, USA,
2001. ACM Press.

[8] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. InMiddleware 2001: Proc. of the IFIP/ACM Int.
Conf. on Distributed Systems Platforms Heidelberg, pages
329–350, London, UK, 2001. Springer-Verlag.

[9] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

	. Introduction and Related Works
	. System Overview
	. Bitmap Indexes
	. Query Routing
	. Handling Updates

	. Simulation
	. Conclusions and Future Works

