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Abstract

Queueing Networks (QNs) are a useful performance modelling notation. They can be used to describe
many kinds of systems, and efficient solution techniques have been developed for some classes of QNmodels.
Despite the fact that QNs have been extensively studied, very few software packages for QN analysis
are available today. In this paper we describe the qnetworks toolbox, a free software package for QN
analysis implemented in GNU Octave. qnetworks provides implementations of solution algorithms for
single-station queueing systems as well as for product- and some non product-form QN models. Exact,
approximate and bound analysis can be performed. Additional utility functions and algorithms forMarkov
Chains analysis are also included. The qnetworks package is available as free software, allowing users to
study, modify and extend the code. This makes qnetworks a viable teaching tool.
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1 Introduction

1 Introduction

QNs are a very powerful modelling notation; they can be applied to many different domains,
including computer networks, supply chain analysis, software systems, street traffic and oth-
ers [21]. QNs has been subject to extensive studies, and a vast literature of solution algorithms
exists. QN models can be evaluated either by simulation, or using analytical and numerical tech-
niques. Simulation has the advantage of being able to evaluate any kind of system, including ex-
tended QN models for which other solution techniques are either not available, or only produce
approximate results. However, simulation can require significant time to accurately evaluate
complex models, and the computed results are only given as confidence intervals. Furthermore,
evaluation of the same model with different parameters (the so-called “what-if” analysis) is com-
putationally costly as it involves a large number of simulation runs.

There is a vast literature on numerical solution techniques for QN models (see [5] and refer-
ences therein); despite this, there is a shortage of software tools implementing these algorithms.
This is particularly unfortunate for many reasons: people keep reimplementing the same old
algorithms over and over again, which is error prone and time consuming. This is especially
true since some QN algorithms can be tricky to implement correctly. Effort put on implementing
old algorithms could be better spent solving interesting modelling problems, or developing new
algorithms.

In this paper we present qnetworks, a QN analysis package written in GNU Octave. GNU
Octave [10] is an interpreted language for numerical computations very similar to MATLAB2[15],
to which it is mostly compatible. qnetworks provides a set of functions for analyzing product-
form (PF) as well as some non PF QN models; bound computation, evaluation of single-station
queueing systems and Markov Chains analysis are also possible. qnetworks is free software:
users can inspect, modify and redistribute the code, which makes qnetworks a viable teaching
tool.

qnetworks is not an integrated modelling tool, like JMT [4] or RESQ [18]. Rather, it is a li-
brary of functions which can be used as building blocks for analyzing QN models. The Octave
interactive environment provides the “glue” which allows complex models to be quickly ana-
lyzed, enabling a greater degree of flexibility which is usually not provided by rigid integrated
modelling environments. Models can be defined and solved programmatically, so that fully au-
tomated batch analysis can be easily implemented. However, a significant understanding of QN
modelling is necessary in order to use qnetworks. For this reason, qnetworks is not appropriate
for the casual user, for which a less flexible but more user-friendly tool would be advisable.

Different usage scenarios for qnetworks can be identified:

• Incremental model development: qnetworks and GNU Octave are an ideal platform for
rapid prototyping and iterative refinement of QN models. Models can be defined and an-
alyzed quickly using the function provided by qnetworks. The Octave language provides
very convenient features for vector manipulations which allow models to be defined con-
cisely.

• Modelling environment: large and complex performance studies can be performed, as
models involving repetitive or embedded structures can be easily defined. Ad-hoc solution
techniques can be realized on top of the available functions. As a specific example, we show
later in this paper how hierarchical modelling with flow-equivalent service centers can be
done with qnetworks, even if no facility to perform such kind of analysis is provided by the
package.

• Queueing Network research: new QN analysis algorithms can be implemented inside
qnetworks and tested against existing ones. Contributions to the qnetworks package are
highly welcome. For many QN algorithms described in the literature, no implementation
is readily available. We hope that qnetworks will encourage researchers and practitioners

2. MATLAB is a trademark of The MathWorks Inc.
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2 Related works

to provide implementations of their own algorithms, so that others can use and improve
them.

• Teaching: qnetworks is suitable for introducing QN modelling concepts and solution tech-
niques. Students can immediately get a visual feedback from the solution of QN models
by using the graphing capabilities provided by GNU Octave. For example, all plots on
this paper has been produced by GNU Octave after solving the appropriate model with
qnetworks.

In order to partially support the above claims, most of this paper is structured in a tutorial
style, showing how qnetworks can actually be used in simple modelling studies. In Section 2
we briefly review related works in the area of QN software. In Section 3 we introduce some
basic concepts and definitions about QNs. In Section 4 we illustrate the features of qnetworks
and the algorithms which have been implemented. In Section 5 we give some usage examples to
demonstrate how qnetworks can be used in practice. Finally, Section 7 contains conclusions and
future works.

2 Related works

Over the years, many software packages for the solution of QN models have been developed.
The ResearchQueueing Package (RESQ) [18] developed at IBM Researchwas one of the first very
successful QN analysis packages. It provided a modelling language for describing extended QN
models, which then could be solved by either analytical of simulation techniques. A graphical
user interface (called RESQME [8]) was developed in order to facilitate the model definition pro-
cess. A similar tool was QNAP2 [22], which provided different solution methods (analytical or
simulation-based) for analyzing product and non-product form QNs. Networks are described
using a textual notation; the QNAP2 tool itself was written in FORTRAN 77.

Unfortunately, both QNAP2 and RESQ are no longer available. Among the tools which are
still available and in use are SHARPE, PDQ and JMT. The Symbolic Hierarchical Automated
Reliability and Performance Evaluator (SHARPE) [17] is an integrated package for describing
and analyzing hierarchical stochastic models, including QN, fault trees, reliability models and
so on. Pretty Damn Quick (PDQ)3 is a QN software package providing bindings for multiple
languages (including Java, PHP, Perl, Python and C). This package implements the exact and
approximate Mean Value Analysis (MVA) algorithm for closed QNs. Finally, the Java Modelling
Tools (JMT)4 [4] is a recent free software tool for construction and evaluation of QN models. JMT
is developed by the Performance Evaluation Lab of the Politecnico diMilano, Italy. JMT is written
in Java, which implies that it is highly portable across different execution environments. JMT is
mostly devoted to simulation-based analysis of extended QNs, although it includes the MVA
algorithm for single as well as multiclass networks.

Additional queueing theory software are listed at:

http://web2.uwindsor.ca/math/hlynka/qsoft.html.

It should be observed that most of the tools listed there (many hyperlinks are broken) are of very
limited scope and/or obsolete.

3 Queueing Networks

QN models are used to describe systems consisting of a collection of resources and a population
of requests (or jobs) which circulate demanding service from the resources. Each resource consists
of a service center, which is represented by a queue connected to a number of identical servers.
A QN model contains a finite number K of service centers. In an open model there are infinite
streams of requests originating outside the system, which arrive to center k with rate λk; requests

3. http://www.perfdynamics.com/Tools/PDQcode.html
4. http://jmt.sourceforge.net/
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4 Overview of qnetworks

can leave the system from any node. In a closed model there is a fixed population of N requests
which continuously circulate through the system. Mixedmodels are also possible, in which there
are multiple classes of requests, some of which are open and other closed.

QN analysis for single-class networks usually involves computing the steady-state probabil-
ities πk(i) that there are i requests at center k. A class of QN models is said to have product-
form solution if the steady state solution of the network can be expressed as the product of fac-
tors describing the state of each individual node. The first class of Product-Form Queueing
Networks (PFQNs) was identified by Jackson [12] which discovered that single-class, open net-
works with the following properties have PF solution:

• Each node of the network can have Poisson arrival fromoutside; a job can leave the network
from any node. λk denotes the external arrival rate to node k. Arrival rates may depend on
the number of requests at the receiving node.

• All service times are exponentially distributed, and service discipline at all nodes is First-
Come First-Served (FCFS).

• The k-th node consists of mk ≥ 1 identical servers with average service time Sk. The service
time Sk may depend on the number of requests at node k.

The result of Jackson has been later extended to closed networks by Gordon and Newell [11],
and to open, closed andmixed networks withmultiple request classes by Baskett, Chandy, Muntz
and Palacios [3]. Specifically, BCMP networks satisfy the following properties:

• Service discipline at each node can be FCFS, Processor Sharing (PS), Infinite Server (IS)
or Last-Came First-Served, Preemptive Resume (LCFS-PR).

• Service times for FCFS nodes must be exponentially distributed and class-independent.
Service times for the other kind of nodes must have rational Laplace transform, and can
in general be class-dependent. The service time Sck of class c requests at service center k
might depend on the number of requests at that center.

• External arrivals to node k (if any) must be a Poisson process. λck denotes the class c arrival
rate at service center k. For closed classes, Nc is the number of class c requests.

• A class r customer completing service at queue i will either move to queue j as a class s
request with probability Prisj , or leave the system with probability 1−

∑

j,s Prisj which can
be nonzero for some subset of queues.

Additional network types have been shown to have PF solution as well. PFQN are of particu-
lar interest because they have efficient solution algorithms; furthermore, despite their limitations
(as stated above) PFQN are general enough to be useful for modelling large classes of actual sys-
tems. Unfortunately, there are many situations which can be encountered in modern systems
which can only be represented with extended QN models which do not have PF solution. For
example, fork-join parallelism, simultaneous resource possession, non-exponential service times
and blocking due to finite capacity queues lead to networks which in general do not have PF so-
lution. In some cases, approximate analysis is possible (the approach of flow-equivalent centers
illustrated in Sec. 5.4 is widely used); otherwise the network can be handled through discrete-
event simulation.

4 Overview of qnetworks

qnetworks is a collection of numerical algorithms written in GNU Octave for exact or approx-
imate solution of single- and multiclass QN models; open, closed or mixed networks are sup-
ported. GNU Octave has been chosen for different reasons. It is free software, available on
multiple operating systems, includingWindows, MacOSX andmost Unix variants. Furthermore,

UBLCS-2010-04 4



4 Overview of qnetworks

Table 1. Some of the functions provided by the qnetworks package

Supported network type
Function Name Open Closed Single Multi

qnopensingle()
√ √

qnopenmulti()
√ √

qnconvolution()
√ √

qnconvolutionld()
√ √

qnclosedsinglemva()
√ √

qnclosedsinglemvald()
√ √

qnclosedmultimva()
√ √

qnclosedmultimvaapprox()
√ √

qnmix()
√ √ √

qnsolve()
√ √ √ √

qnmvablo()
√ √

qnopenab()
√ √

qnclosedab()
√ √

qnopenbsb()
√ √

qnclosedbsb()
√ √

qnclosedgb()
√ √

GNUOctave is mostly compatible with MATLAB, a language for numerical computations which
is widely used in the research and industrial community. Thus, many students, researchers or
practitioners interested in the numerical analysis of QN models will likely be already familiar
with GNU Octave or MATLAB.

Technically, the qnetworks package includes a set of m-scripts; an m-script is a program speci-
fied in Octane interpreted language. While m-scripts are slower than compiled code, they allow
maximum portability as they can be executed on any platform where the Octave interpreter has
been ported. It should be observed that in most practical cases execution times of the algorithms
in qnetworks are acceptable, so there is currently no need to rewrite the functions as compilable
C/C++ code.

Table 1 lists the most important functions provided by the qnetworks package; documentation
for each function can be accessed with the Octave help command, and is also included in the
package documentation.

4.1 Single-station queueing systems

qnetworks provides functions for analyzing several types of single-station queueing systems [13,
5]: M/M/m5, M/M/m/k, M/M/∞, and asymmetric M/M/m (this system contains m service
centers with possibly different service rates), M/G/1 (general service time distribution) and
M/Hm/1 (Hyperexponential service time distribution). For each kind of system, the following
performance measures can be computed: utilization U , mean response time R, average number
of requests in the system Q and throughput X .

4.2 Algorithms for product-form networks

qnetworks provides functions for analyzing PFQNs. For open networks, the qnopensingle() and
qnopenmulti() functions apply to networks with single or multiple customer classes, respectively.
These functions implement the well known equations for Jackson networks, and the extensions
for BCMP open multiclass networks [14, 5].

For PF closed networks, exact as well as approximate algorithms are provided. For single-
class closed networks, the MVA [16] and convolution [6] algorithms are implemented by the
qnclosedsinglemva() and qnconvolution() functions respectively. Both support FCFS, LCFS-PR,

5. We use the standard Kendall’s notation A/B/C/K , where A denotes the arrival process (M=Poisson), B denotes the
service time distribution (M=exponential), C is the number of servers, K is the capacity of the system
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4 Overview of qnetworks

PS and IS nodes; single andmultiple server FCFS nodes are supported aswell. qnclosedsinglemvald()
and qnconvolutionld() implement the MVA and convolution algorithms for networks with gen-
eral load-dependent service centers. We provide separate functions for networks with and with-
out general load-dependent service centers because the former have a higher computational cost
and require more memory, and at the same time are not frequently used. So we provide effi-
cient implementations for the common case of networks without general load-dependent centers,
while still allowing users to handle the general case using different functions.

For PF multiclass closed networks we implemented the multiclass MVA algorithm in the
qnclosedmultimva() function. For networks with K service centers, C customer classes and popu-

lation vector (N1, N2, . . . NC), the multiclass MVA algorithm requires timeO
(

CK
∏C

i=1
(Ni + 1)

)

and space O
(

K
∏C

i=1
(Ni + 1)

)

. Due to its time and space complexity, the multiclass MVA al-

gorithm is appropriate only for networks with small population and a limited number of cus-
tomer classes. For larger networks, approximations based on the MVA have been proposed in
the literature. qnetworks provides the Bard and Schweitzer approximation [19, 14] in function
qnclosedmultimvaapprox().

Mixed multiclass PFQNs [3] are handled by the qnmix() function. In mixed networks, both
open and closed classes of customers can be present at the same time; each class has its own
routing probabilities. The qnmix() function does not currently allow class switching, nor supports
general load-dependent queueing centers.

Finally, the higher-level function qnsolve() can be used as a single front-end to the algorithms
described above. This function uses a less efficient, but more flexible representation of the net-
work to be evaluated, and delegates the actual analysis to the appropriate solution algorithm (if
available) for the particular kind of network.

4.3 Algorithms for non product-form networks

qnetworks includes algorithms for handling closed single-class networks with blocking. In block-
ing QNs, queues have a fixed capacity: a request joining a full queue will block until a slot in
the destination node becomes available. Different blocking strategies have been investigated in
the literature (see [2] for a review). The qnmvablo() function implements the MVABLO algo-
rithm [1]. MVABLO is based on an extension of MVA, and computes approximate solutions for
closed, single-class networks with Blocking After Service (BAS) blocking. According to the BAS
discipline, a request joining a full queue blocks the source server until a slot is available at the
destination.

Networks with blocking can also be analyzed with the qnmarkov() function. This function
supports either open or closed, single-class networks where all queues have fixed capacity. Exact
performancemeasures are derived by explicit construction of the underlyingMarkovChain. This
approach is appropriate for small networks only, due to the exponential growth of the size of the
Markov Chain as the network increases.

4.4 Bound Analysis

It is often useful to compute bounds for the system throughput X or response time R. Perfor-
mance bounds can be obtained very quickly, and can be useful for many performance studies
such as problems involving on-line performance tuning of systems. qnetworks implements three
different algorithms for computing performance bounds: Asymptotic Boundss (ABs) [9] for open
and closed networks (functions qnopenab() and qnclosedab() respectively), Balanced System
Boundss (BSBs) [23] for open and closed networks (functions qnopenbsb() and qnclosedbsb() re-
spectively) networks, andGeometric Boundss (GBs) [7] for closed networks (function qnclosedgb()).

4.5 Validation

Almost all the functions provided by the qnetworks package include unit tests embedded inside
the m-files. The tests can be invoked using Octave test function; it is also possible to run all tests

UBLCS-2010-04 6
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Figure 1. Open model of a two-tier E-commerce site; arrows denote nonzero flows

with a single command, which is particularly useful for checking the whole source distribution
before releasing a new version.

As for many numerical softwares, testing QN packages can be nontrivial [20]. When possible,
testing is done by computing results on reference networks for which correct values are known
(e.g., from the literature). When exact solutions are not known, results can still be validated by
computing them with different algorithms. For example, the MVA and convolution algorithms
can be applied to the same network, and they must provide the same results (apart for a small
deviation due to numerical inaccuracies). As another example, a M/M/1/K queue is a special
case of an M/M/m/K queue with m = 1 servers. Thus, in this case the performance results
provided by the qnmmmk() and qnmm1k must be the same. Finally, even when results cannot be
directly compared, consistency checks can nevertheless be done. For example, the bounds on the
system throughput computed by the AB or BSB equations must include the exact result provided
by the MVA algorithm. Thus, it is possible to cross-check the qnclosedab(), qnclosedbsb() and
qnclosedmva() functions.

5 Examples

In this section we present some usage examples of the qnetworks package.

5.1 Open network

As a first example, let us consider a simple model of a two-tier E-commerce site. The model
is shown in Fig. 1 and consists of six FCFS service centers. Center 1 is the dispatcher, and is
responsible for routing incoming requests to one of the Web servers (centers 2–4); we assume
random routing with equal probability. After being processed by one of the Web servers, each
request may leave the system with probability pexit, or be forwarded to one of the Database
servers (centers 5, 6).

We assume average service times S1 = 0.5 at the dispatcher, S2 = S3 = S4 = 0.8 at the
Web servers and S5 = S6 = 1.8 at the Database servers; we set the arrival rate at center 1 as
λ1 = 0.1 requests/s and exit probability pexit = 0.5. The transition probability matrix P is:

P =

















0 1/3 1/3 1/3 0 0
0 0 0 0 1/4 1/4
0 0 0 0 1/4 1/4
0 0 0 0 1/4 1/4
0 1/3 1/3 1/3 0 0
0 1/3 1/3 1/3 0 0

















This model can be defined with the following GNU Octave code:

UBLCS-2010-04 7
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Figure 2. Closed model of a two-tier E-commerce site

p exit = 0.5; # exit probability
i = 2:4; # indexes of Web servers
j = 5:6; # indexes of DB servers
P = zeros(6,6);
P(1, i ) = 1/3;
P(i , j ) = (1−p exit )/2;
P(j , i ) = 1/3;
S = [0.5 0.8 0.8 0.8 1.8 1.8];
lambda = [0.1 0 0 0 0 0];
V = qnvisits (P,lambda);

Note the use of array slicing to define the matrix P : variables i and j are ranges, and the single
instruction P(j , i )=1/3 sets Pji = 1/3 for all j ∈ {5, 6} and i ∈ {2, 3, 4}.

In the code above we compute the visit counts Vk to service center k using the qnvisits ()
function. The visit counts Vk satisfy the equality Vk = λk +

∑K

j=1
VjPjk . In the example above,

we get V1 = 1, V2 = V3 = V4 = 0.66̄ and V5 = V6 = 0.5.
The network is a PFQN and can be evaluated using the qnopensingle() function, as follows:

[U R Q X] = qnopensingle(sum(lambda),S,V);

where sum(lambda) is the global arrival rate
∑

k λk . The resulting utilizations are U1 = 0.05,
U2 = U3 = U4 = 0.053̄ and U5 = U6 = 0.09. It is also easy to compute the maximum arrival
rate λsat which the system can sustain: it is well known that λsat = 1/ maxk{SkVk}, and can be
computed by the GNU Octave expression lambda sat=1/max(S.∗V), which produces λsat = 1.11̄
as result. The expression S.∗V computes the vector of element-by-element products of S and V .

5.2 Closed network

We show in Fig. 2 a closed model which is based on the open model of Fig. 1. We have a fixed
population of N = 20 requests which circulate through the service centers. Each request spends
an average delay Z = 5 outside the system between service cycles. Z is also known as think time
and is represented by the IS node in Fig. 2.

Again, we can define and solve the model with the following GNU Octave code:

p back = 0.5; # back probability
i = 2:4; # range of Web servers
j = 5:6; # range of DB servers
P = zeros(6,6);
P(1, i ) = 1/3;
P(i , j ) = (1−p back)/2;
P(i ,1) = p back;
P(j , i ) = 1/3;

UBLCS-2010-04 8
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Figure 3. Comparison between AB, BSB and exact value of the throughput X(N) of the closed network
of Fig. 2 as a function of the population size N

S = [0.5 0.8 0.8 0.8 1.8 1.8];
V = qnvisits (P);
Z = 5; # Think Time
N = 20; # Population
m = ones(1,6); # m(k)=number of servers at center k
[U R Q X] = qnclosedsinglemva(N,S,V,m,Z);

The qnclosedsinglemva() function solves the given network using the MVA algorithm. The
computed utilizations are U1 = 0.50112, U2 = U3 = U4 = 0.53453 and U5 = U6 = 0.90202.

5.3 Bottleneck Analysis

We can use the qnclosedab() and qnclosedbsb() functions to compute bounds on the system
throughput X and response time R. If we consider the closed model defined above, bounds on
the throughput can be computed as:

D = S.∗V; # Service demands
[X bsb low X bsb up] = qnclosedbsb(N,D,Z); # Balanced System Bounds
[X ab low X ab up] = qnclosedab(N,D,Z); # Asymptotic Bounds

Dk = SkVk is the service demand at center k. We plot in Fig. 3 the bounds and the exact
throughput computed using MVA, for different values of the population size N .

5.4 Flow-equivalent centers

We now show how more complex analysis can be performed with qnetworks. Let us consider
the closed model of Fig. 4(a). which is very similar to the one from Fig. 2 with the additional
introduction of a capacity constraint: no more than M requests can be in the dashed region. Any
request entering the fixed capacity region when M requests are already inside, must wait in a
queue until a request leaves the region.

Models with capacity constraints have in general no PF solution. However, in this case it is
possible to replace the fixed capacity region with a load-dependent service center [14], and solve
the resulting model (which does have PF solution). More specifically, we proceed as follows:

UBLCS-2010-04 9
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Figure 4. Closed model with capacity constraint

1. Define the complete model as in Section 5.2. Then, “short circuit” center 1 by setting its
service time to zero (S(1)=0); we get the submodel in Fig. 4(b).

2. Solve the short-circuited submodel by computing the throughput Xsub(n) along the re-
moved node(s) as a function of the population size n = 1, 2, . . .M . The computed value
for Xsub(n) can be used to derive the average service time Ssub(n) of the flow-equivalent
center which will replace the capacity constrained region. Ssub(n) is defined as:

Ssub(n) =

{

1/Xsub(n) if 1 ≤ n ≤ M

1/Xsub(M) if M < n ≤ N

and can be computed with the following GNU Octave code:

Ssub = zeros(1,N); # Initialize to zero
M = 10; # Capacity constraint
for n=1:M

[U R Q X] = qnclosedsinglemva(n,S,V);
Ssub(n) = V(1)/X(1);

endfor
Ssub(M+1:N) = Ssub(M);

3. Build an equivalent model (see Fig. 4(c)) starting from the full model with the capacity
constrained region replaced by a Flow-Equivalent Service Center (FESC). The service times
for the FESC are those computed in the previous step. Let Skn be the service time at center
k when there are n requests; we have that S1n = 0.5 and S2n = Ssub(n), for all n. The
equivalent model is defined and solved with the following code:
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Figure 5. System ThroughputX(N) for the models of Fig. 2 and 4 as a function of the number of requests
N .

S = [ 0.5∗ones(1,N); Ssub ];
V = [1 1];
Z = 5;
[U R Q X] = qnclosedsinglemvald(N,S,V,Z);

By repeating the above for different values of the population size N we can produce the plot
shown in Fig. 5. We show the system throughput X(N) as a function of N . As expected, the
system saturates shortly after the number of requests N exceeds the population constraint M .

6 Performance Considerations

We recall that qnetworks is entirely written as m-scripts running inside the GNU Octave inter-
preter. Despite this, performance of most of qnetworks functions are generally good. To give
an example, we consider the qnclosedsinglemva() function implementing the MVA algorithm
for single-class closed networks. These kind of networks are widely used in practice, so it is
important to analyze them efficiently.

Fig. 6 illustrates the execution time of qnclosedsinglemva() for different values for the network
size K and population N . The tests have been performed by creating a K server network, with
random service times and visit counts. The tests have been performed on a Linux PC with an
Intel Pentium 4 processor running at 2.4GHz with 1GB of RAM. We used GNU Octave version
3.2.3. For each combination of K andN , we consider the average execution time of 5 independent
runs; for each run we build a new random network.

We observe that the largest network (K = 2000 servers and N = 500 requests) takes about
half second to be analyzed on our machine. We also observe that for fixed K , the execution time
increases linearly with the network size N . This is expected, as the computational complexity
of MVA for single-class, load-independent service centers is O(NK).
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Figure 6. Execution time of the qnclosedsinglemva() function (in seconds, average of five measure-
ments).

7 Conclusions

In this paper we described qnetworks, a QN analysis package for GNU Octave. After illustrating
the main features of qnetworks, we gave some practical usage example showing how the Octave
environment coupled with qnetworks can be used to solve QN models.

There is a vast literature of numerical solution algorithms for QNs, and we currently imple-
mented some of the most important ones. We are extending qnetworks by including functions
to evaluate additional types of non-exponential single-station queueing systems, as well as addi-
tional classes of QNs, including QNs with blocking as they have many practical applications.

qnetworks is available at http://www.moreno.marzolla.name/software/qnetworks
and can be used, modified and distributed under the terms of the GNU General Public License
(GPL) version 3.
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[22] Michel Véran and Dominique Potier. QNAP2: A portable environment for queueing sys-
tems modelling. Technical Report 314, Institut National de Recherche en Informatique et en
Automatique, June 1984.

[23] J. Zahorjan, K. C. Sevcick, D. L. Eager, and B. I Galler. Balanced job bound analysis of
queueing networks. Comm. ACM, 25(2):134–141, February 1982.

UBLCS-2010-04 13


	 Introduction
	 Related works
	 Queueing Networks
	 Overview of qnetworks
	 Single-station queueing systems
	 Algorithms for product-form networks
	 Algorithms for non product-form networks
	 Bound Analysis
	 Validation

	 Examples
	 Open network
	 Closed network
	 Bottleneck Analysis
	 Flow-equivalent centers

	 Performance Considerations
	 Conclusions

