
Queueing Networks Analysis with the qnetworks
Toolbox

Moreno Marzolla

Technical Report UBLCS-2012-02

February 2012

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7
40126 Bologna (Italy)

Queueing Networks Analysis with the qnetworks
Toolbox

Moreno Marzolla1

Technical Report UBLCS-2012-02

February 2012

Abstract

Queueing Networks (QNs) are a widely used performance modeling notation, which has been success-
fully applied to many kind of systems. Despite the wealth of scientific literature on the solution of QN
models, there are very few available implementations of these solution techniques. In this paper we de-
scribe qnetworks, a free software package for Queueing Network analysis written in GNU Octave.
qnetworks allows users to compute performance measures of Markov chains, single-station queueing
systems and product- and some non product-form QN models. We present some practical examples show-
ing how qnetworks can be used for reliability analysis, capacity planning and general systems modeling
and evaluation.

1. Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo Zamboni 7, I-40127 Bologna, Italy

1

1 Introduction

1 Introduction
QNs are a powerful modeling notation which can be used for capacity planning, bottleneck anal-
ysis and performance evaluation of many kinds of systems. A QN consists of K service centers
made of one or more servers with an associated queue. Requests circulate through the system:
each request joins a queue where it receives service from one of the associated servers. Requests
are processed according to a queueing policy (e.g., FIFO) and eventually spend some time in one
of the servers before joining another queue (or leaving the system).

QN analysis usually involves the computation of steady-state performance measures, such
as throughput Xk, mean queue length Qk, response time Rk and utilization Uk of each server
k = 1, . . . ,K. QN models can be evaluated either by simulation, or using analytical and numer-
ical techniques. Some classes of QN models enjoy product-form solution [3], which means that
steady-state performance measures can be computed efficiently. For models that do not satisfy
the product-form condition, performance measures can be obtained through simulation or with
approximate numerical techniques. Simulation can be computationally demanding, making it
a poor choice for evaluating the same model with different parameters (the so-called “what-if”
analysis), or in all situations where models must be evaluated at run-time (e.g., in self-adaptive
autonomic systems [17]).

Despite the vast literature on numerical solution techniques for QN models (see [5] and ref-
erences therein), there is a shortage of software tools for QN analysis. To this aim, we developed
qnetworks, a QN analysis package written in GNU Octave [12], an interpreted language for nu-
merical computations. qnetworks provides functions for exact, approximate and bound anal-
ysis of QNs; furthermore qnetworks includes functions for analyzing single-station queueing
systems and Markov chains.

This paper is structured as follows. In Section 2 we illustrate the main design principles be-
hind qnetworks. Section 3 gives an overview of the most important functions provided by
the package. Section 4 describes some practical usage examples in the area of reliability analy-
sis (Section 4.1), bound analysis of QNs (Section 4.2) and multiclass QN analysis (Section 4.3).
Concluding remarks are given in Section 5.

2 Design Principles
qnetworks is a collection of Octave functions for computing various transient and steady-state
performance measures of queueing models and Markov chains. The Octave interactive environ-
ment provides the glue which allows complex models to be built and evaluated programmati-
cally. This can be useful, e.g., to do parametric evaluation of complex model, or to perform ad-hoc
analysis not already covered by one of the available qnetworks function. While this allows the
greater degree of flexibility, it imposes a steep learning curve. For those which are not willing to
sustain such burden, less flexible but more user-friendly modeling tools–e.g., JMT [4]–are avail-
able.

The following usage scenarios for qnetworks can be identified: (i) Incremental model de-
velopment: qnetworks and GNU Octave can be used for rapid prototyping and iterative refine-
ment of QN models. (ii) Modeling environment: large and complex performance studies can be
done quickly, since models involving repetitive or embedded structure can be easily defined. (iii)
Queueing Network research: new algorithms can be programmed and tested against existing
ones. The Octave language is well suited for implementing numerical algorithms which operate
on arrays or matrices; QN algorithms fall in this category. (iv) Reference implementations: as
observed in [8], some large research communities (e.g., linear algebra and parallel computing)
have a long history of sharing implementations of standard algorithms. qnetworks aims at
providing reference implementations of core QN algorithms. (v) Teaching: qnetworks is being
used in some Universities to teach performance modeling courses. Since the package implements
many textbook QN algorithms, students can immediately put those algorithms at work to solve
practical problems, encouraging “learning by doing”.

UBLCS-2012-02 2

3 Package Content

Name Description

ctmc() Stationary/Transient state occupancy probabilities
ctmc_exps() Mean Sojourn Times
ctmc_fpt() First Passage Times

ctmc_mtta() Mean Time to Absorption
dtmc() Stationary/Transient state occupancy probabilities

dtmc_fpt() First Passage Times

Table 1. Some functions for Markov chains analysis; prefix ctmc denotes functions for continuous time
chains, dtmc for discrete time

Special care has been put to make qnetworks a useful tool for research, education of practical
use. The documentation of each function can be accessed using the help() Octave command
(e.g., help(ctmc) prints the usage documentation of the ctmc() function). Function demos
are available as well, and can be accessed using the demo() command, e.g., demo("ctmc")
displays and executes all demo blocks for the ctmc() function.

One important issue of numerical software is to make sure that the computed results can be re-
lied on. qnetworks functions include unit tests embedded as specially-formatted comments in-
side the source code. Tests are used to check the function results against reference values for spe-
cific models described in the literature. When reference results are not available, cross-validation
may be possible by executing two different functions on the same model and comparing the re-
sults. For example, the same closed network can be analyzed by Mean Value Analysis (MVA), or
using the convolution algorithm. Finally, results can be compared with those produced by differ-
ent tools. For example, the multiclass MVA implementation from qnetworks does not produce
the reference result on a specific model described on [20, Figure 7, p. 9]. However, the results
computed by qnetworks match those computed by Java Modeling Tools (JMT) for the same
model, suggesting that the discrepancy may be due to a typo in the reference paper.

3 Package Content
In this section we illustrate some of the functions contained in qnetworks grouped by area:
Markov chain analysis, single station queueing systems and queueing networks.

3.1 Markov chains
A discrete-time Markov chain is defined as a set of N states with an N ×N transition probability
matrix P such that Pi,j is the transition probability from state i to state j. A continuous-time
Markov chain is describes as a stochastic matrix Q, where Qi,j represents the transition rate from
state i to state j 6= i.

Table 1 lists some of the functions provided by qnetworks to compute useful performance
measures on continuous and discrete time Markov chains. Performance measures include state
occupancy probabilities, mean time to absorption, mean sojourn times and first passage times.

Let πi(t) be the probability that the system is in state i ∈ {1, . . . , N} at time t. The N dimen-
sional vector π(t) = (π1(t), . . . , πN (t)) denotes the state occupancy probabilities at time t. Under
certain conditions [5] a Markov chain has a stationary distribution π which is independent from
the initial occupancy probability π(0).

The stationary distribution of a Markov chain can be computed as p = dtmc(P) (for discrete
chains) or q = ctmc(Q) (for continuous chains). The same functions can be invoked with three
parameters, e.g., pn = dtmc(P,n,p0) to compute the state occupancy probability vector pn at
step n given the initial probability vector p0 at step 0 (for continuous Markov chains function
ctmc() can be used similarly).

UBLCS-2012-02 3

3 Package Content

Function Name Description

qnopenab() Asymptotic Bounds for open networks [11]
qnclosedab() Asymptotic Bounds for closed Networks@ [11]
qnopenbsb() Balanced System Bounds for open networks [22]

qnclosedbsb() Balanced System Bounds for closed networks [22]
qnclosedgb() Geometric Bounds for closed networks [9]

qnopensingle() Analysis of open Jackson networks [14]
qnopenmulti() Analysis of open, multiclass product form networks

qnconvolution() Convolution algorithm for closed, single class QNs with fixed-rate servers [6]
qnconvolutionld() Convolution algorithm for closed, single class QNs with general load dependent servers

qnclosedsinglemva() MVA for closed, single class networks with fixed-rate and multiple server nodes [18]
qnclosedsinglemvald() MVA for closed, single class networks with general load dependent servers

qncmva() Conditional MVA for closed, single class networks with a load dependent server [7]
qnclosedmultimva() MVA for closed, multiclass networks with fixed-rate and multiple server nodes [18, 21]

qnclosedmultimvaapprox() Approximate MVA for closed, multiclass networks with fixed-rate servers using Schweitzer’s
approximation [19]

qnmix() MVA for mixed networks with fixed-rate servers [21]
qnmvablo() Approximate MVA for closed, single class networks with blocking [1]
qnmarkov() Exact analysis of closed, single class networks with blocking by direct solution of the underlying

Markov chain

Table 2. Some functions for QN analysis

The mean time to absorption is defined as the average number of steps (time, in the continuous
case) it takes to reach an absorbing state, given the initial occupancy probability vector π(0). A
state i is absorbing if it has no outgoing transitions. The first passage time Mi,j is defined as the
average number of transitions (time, in case of continuous chains) before state j is visited for the
first time, starting from state i. Finally, the mean sojourn time Lt,j is the mean time spent in state j
during the time interval [0, t]. As we will see in Section 4.1, these parameters are useful for many
applications, such as reliability analysis.

3.2 Single station queueing systems
qnetworks provides functions for analyzing many types of single station queueing sys-
tems [5, 15]: M/M/m2, M/M/m/k, M/M/∞, asymmetric M/M/m (this system contains m
service centers with possibly different service rates), M/G/1 (general service time distribution)
and M/Hm/1 (Hyperexponential service time distribution). For each kind of system, the fol-
lowing performance measures can be computed: utilization U , mean response time R, average
number of requests in the system Q and throughput X .

3.3 Queueing Networks
Table 2 lists the most important functions for QN analysis provided by qnetworks, which can
be roughly grouped in three classes: algorithms for bound analysis, algorithms for product-
form QNs, and algorithms for non-product form QNs.

Bound Analysis Bound analysis is used to compute upper and/or lower limits on the system
throughput X and response time R. Performance bounds can be computed efficiently, and
are useful for many situations such as those involving on-line performance tuning of systems.
qnetworks provides algorithms for computing three classes of bounds: Asymptotic Bounds
(AB) [11] for open and closed networks, Balanced System Bounds (BSB) [22] for open and closed
networks, and Geometric Bounds (GB) [9] for closed networks.

Product-Form QNs qnetworks allows the computation of exact and approximate steady-state
performance measures of open and closed product-form networks. Networks can have a
single class of requests, or multiple independent request classes. Open networks are handled
by the qnopensingle() (single customer class) and qnopenmulti() (multiple customer

2. We use the standard Kendall’s notation A/B/C/K, where A denotes the arrival process (M=Poisson), B denotes the
service time distribution (M=exponential), C is the number of servers, K is the capacity of the system

UBLCS-2012-02 4

4 Examples

classes) functions. For single-class closed networks, the MVA [18] and convolution [6] algo-
rithms are implemented by the qnclosedsinglemva() and qnconvolution() functions,
respectively. Both support First-Come First-Served (FCFS), Last-Came First-Served, Preemp-
tive Resume (LCFS-PR), Processor Sharing (PS) and Infinite Server (IS) nodes; single and
multiple server FCFS nodes are handled. For efficiency reasons, and to make the code more
readable, the convolution and MVA algorithms for single class networks with general load-
dependent service times are implemented in separate function qnconvolutionld() and
qnclosedsinglemvald(), respectively.

Product-form closed networks with multiple classes of requests are analyzed using
qnclosedmultimva(). Class switching is supported: requests are allowed to switch class after
completing service. Multiclass networks with class switching can be transformed into equivalent
networks without class switching by introducing the concept of chain. A chain consists of one
or more classes, such that requests can move from one class to another class of the same chain;
however, requests are not allowed to move to a class outside the chain they belong to.

For networks with K service centers, C customer chains and population vector (N1, . . . , NC)

whereNc is the number of requests in chain c, the multiclass MVA requires timeO
(
CK

∏C
i=1(Ni + 1)

)
and space O

(
K
∏C

i=1(Ni + 1)
)

. Due to its computational cost, multiclass MVA is ap-
propriate for networks with small population and limited number of chains. For larger
networks, approximations based on the MVA have been proposed in the literature; func-
tion qnclosedmultimvaapprox() implements the approximation scheme by Bard and
Schweitzer [2, 16, 19]. The space requirement of the approximate MVA is O(CK), which is
significantly less than those of the exact multiclass MVA.

Finally, mixed multiclass Product-form Queueing Network (PFQN) [3] are handled by the
qnmix() function. In mixed networks, both open and closed classes can be present at the same
time.

Non product-form QNs qnetworks includes a few algorithms for evaluating closed single class
networks with blocking. In blocking networks, queues have a maximum capacity: a request
joining a full queue will block until a slot in the destination node becomes available. The
qnmvablo() function implements the MVABLO algorithm [1] which is based on an extension
of MVA. MVABLO provides approximate stationary performance measures for closed, single
class networks with Blocking After Service (BAS) blocking. According to the BAS discipline, a
request joining a full queue blocks the source server until a slot is available at the destination.

Networks with blocking can also be analyzed with the qnmarkov() function. This function
supports single-class networks, either open or closed, where all queues have fixed capacity. Exact
performance measures are derived by explicit construction of the underlying Markov chain. This
approach is appropriate for small networks only, due to the exponential growth of the state space.

4 Examples
In this section we give three practical usage examples of qnetworks, for reliability analysis using
Markov chains, capacity planning using bound analysis, and multiclass QNs analysis.

4.1 Reliability Analysis with Markov chains
We consider the reliability model of a multiprocessor system described in [13] and shown in
Figure 1. There are N = 2 processors, each one subject to failures with Mean Time To Failure
(MTTF) 1/γ. States labeled n ∈ {0, 1, 2} denote that there are n working processors. If one
processor fails, it can be recovered (state RC) with probability c; recovery takes time 1/β. When
the system can not be recovered, a reboot is required (state RB), which brings down the entire
system for time 1/α > 1/β. The mean time to repair a failed processor is 1/δ.

UBLCS-2012-02 5

4 Examples

2 1 0

RC

RB

2cγ

2(1− c)γ α

β

δ

γ

δ

Figure 1. Reliability Model

If we enumerate the states as {2, RC,RB, 1, 0}, we can define the model and compute the
steady state occupancy probability vector using the following Octave code (we use a, b, g, d
instead of α, β, γ, δ; parameter values are defined as in [13]):

1 a = 1/(10*60); # 1/a = duration of reboot (10 min)
2 b = 1/30; # 1/b = reconfiguration time (30 sec)
3 g = 1/(5000*3600); # 1/g = processor MTTF (5000 h)
4 d = 1/(4*3600); # 1/d = processor MTTR (4 h)
5 c = 0.9; # coverage
6 # state space enumeration {2, RC, RB, 1, 0}
7 Q = [-2*g 2*c*g 2*(1-c)*g 0 0; \
8 0 -b 0 b 0; \
9 0 0 -a a 0; \

10 d 0 0 -(g+d) g; \
11 0 0 0 d -d];
12 p = ctmc(Q);

which gives p = (9.9839×10−1, 2.9952×10−6, 6.6559×10−6, 1.5974×10−3, 1.2779×10−6). From
these values we can compute several interesting availability metrics; for example, the average
time spent over a year in states RC, RB and 0 is:

state space enumeration {2, RC, RB, 1, 0}
p(2)*525600 # minutes/year spent in RC
=> 1.5743
p(3)*525600 # minutes/year spent in RB
=> 3.4984
p(5)*525600 # minutes/year spent in 0
=> 0.67169

that is, over a year (525600 minutes), the system is unavailable for about 1.6 minutes due to
reconfigurations, 3.5 minutes due to reboots and 0.7 minutes due to failure of both processors.

We now compute the Mean Time Between Failures (MTBF) of the whole system, defined as
the average duration of continuous system operation. We assume that the system starts in state
2, and we consider the system operational also when in the reconfiguration state. Therefore, the
set of states which we consider operational is {2, 1, RC}. If we make states 0 and RB absorb-
ing by removing all their outgoing transitions, the MTBF is the mean time to absorption of the
(modified) Markov chain:

Q(3,:) = Q(5,:) = 0; # make states {0, RB} absorbing
p0 = [1 0 0 0 0]; # initial state occupancy prob.
MTBF = ctmc_mtta(Q, p0) # MTBF (seconds)
=> 8.9486e+07

from which we obtain a MTBF of approximately 24857 hours (2.8 years). Q(3,:) is the Octave
notation (also called array slicing) to denote the third row of matrix Q

UBLCS-2012-02 6

4 Examples

2

Disk Cache

p

CPUs

1

Tape Server

1− p

Figure 2. Queueing model of Tape

p S1 S2 Z

Conf. (a) 0.9 300s 40s 1800s
Conf. (b) 0.75 300s 30s 1800s

Table 3. Parameters for the model in Figure 2

4.2 Bound Analysis
Bound analysis is useful to quickly evaluate different systems or different configurations of the
same system. As an example, we consider a simple model of a scientific computing cluster, where
N independent jobs process data stored in a tape library. A disk-based cache is used to limit the
access of the (slow) tape library. A job reads the data it needs from disk; in case of a cache miss
(which happens with probability 1 − p), the data is copied from tape to disk before the job is
allowed to proceed.

The system can be represented by the closed network shown in Figure 2. The model has
two FCFS servers representing the tape library and disk cache, respectively; a delay center (IS
node) represents the pool of CPUs (jobs do not compete for a free CPU). We denote with Z the
mean duration of each job, with S1 the mean tape transfer time and with S2 the mean disk transfer
time.

Suppose that the system architects can choose between two different configurations that both
fit within the budget constraints. Configuration (a) uses a large cache of inexpensive disks; this
means that the cache hit ratio p is higher, but disk transfer times are larger since disks are slower.
Configuration (b) uses a smaller cache of fast disks; in this scenario, the cache hit ratio p is smaller,
but disk transfer times are low. Estimates of the parameters for both scenarios are given in Table 3.
We perform a bound analysis to understand which configuration provides the better throughput
when a large number of jobs is present. This can be done with the following Octave code:

1 # Configuration (a) # Configuration (b)
2 S = [300 40]; S = [300 30];
3 p = .9; p = .75;
4 P = [0 1; \ P = [0 1; \
5 1-p p]; 1-p p];
6 V = qnvisits(P); V = qnvisits(P);
7 DA = S.*V DB = S.*V
8 XA = 1/max(DA); XB = 1/max(DB);

Line 6 computes the visit ratios V from the routing matrix P; we recall that the visit ratio
Vk at center k satisfies the equation Vk =

∑N
k=1 Pj,kVj . The visit ratios are used in line 7 to

compute the service demand vectors DA and DB for configurations (a) and (b) respectively. The
service demand Dk at center k is defined as Dk = SkVk, and represents the total time spent
by a request on each server. Finally, line 8 computes the maximum (asymptotic) throughputs
XA and XB as the inverse of the maximum service demand. We obtain XA = 2.5 × 10−3 jobs/s,
XB = 3.3× 10−3 jobs/s. Therefore, we conclude that scenario (b), that is a large pool of slow disk,

UBLCS-2012-02 7

4 Examples

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 20 40 60 80 100

S
y
s
te

m
 t
h
ro

u
g
h
p
u
t
(j
o
b
s
/s

)

Number of requests

Scenario (a): Large pool of slow disks

Scenario (b): Small pool of fast disks

Figure 3. System throughput X for the two configurations. The continuous line is the upper bound,
dashed line is the exact value computed using MVA

1

3

2

App. Servers

6

5

4

DB Server

Class 1

Class 2

Web Server

Figure 4. Three-tier enterprise system model from [10]

allows higher throughput for a large number of concurrent jobs.
Figure 3 shows the upper bounds (continuous line) on the system throughput X computed

by qnclosedbsb(). The dashed lines are the exact values computed using the MVA as imple-
mented in qnclosedsinglemva().

4.3 Multiclass QN Analysis
In this last example we consider the case study described in [10]. The model shown in Figure 4
shows a three-tier enterprise system with K = 6 service centers. The first tier contains the Web
server (node 1), which is responsible for generating Web pages and transmitting them to clients.
The application logic is implemented by nodes 2 and 3, and the storage tier is made of nodes
4–6.The system is subject to two workload classes, both represented as closed populations of N1

and N2 requests, respectively. Let Dc,k denote the service demand of class c requests at center k.
We use the parameter values given in [10] and reported on Table 4.

We set the total number of requests to 100, that is N1 + N2 = N = 100, and we study how
different population mixes (N1, N2) affect the system throughput and response time. Let β1 ∈
(0, 1) denote the fraction of class 1 requests: N1 = β1N , N2 = (1 − β1)N . The following Octave
code defines the model for β1 = 0.1:

1 N = 100; # total population size
2 beta1 = 0.1; # fraction of class 1 reqs.
3 S = [12 14 23 20 80 31; \
4 2 20 14 90 30 33];
5 V = ones(size(S));
6 pop = [fix(beta1*N) N-fix(beta1*N)];
7 [U R Q X] = qnclosedmultimva(pop, S, V);

The qnclosedmultimva(pop, S, V) function invocation (line 7) uses the multiclass MVA

UBLCS-2012-02 8

4 Examples

Demands

Name Class 1 Class 2

1 Web Server 12 2
2 App. Server 1 14 20
3 App. Server 2 23 14
4 DB Server 1 20 90
5 DB Server 2 80 30
6 DB Server 3 31 33

Table 4. Parameters for the model in Figure 4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 0.2 0.4 0.6 0.8 1

R
e
s
p
o
n
s
e
 T

im
e

Population mix β1 for Class 1

Class 1
Class 2
System

0

0.005

0.01

0.015

0.02

0 0.2 0.4 0.6 0.8 1

T
h
ro

u
g
h
p
u
t

Figure 5. Throughput and Response Times as a function of the population mix β

algorithm to compute per-class utilizations Uc,k, response times Rc,k, mean queue lengths Qc,k

and throughputs Xc,k at each service center k, given a population vector pop, mean service
times S and visit ratios V. Since we are given the service demands Dc,k = Sc,kVc,k, but func-
tion qnclosedmultimva() requires separate service times and visit ratios, we set the service
times equal to the demands (line 3–4), and all visit ratios equal to one (line 5). Overall class and
system throughputs and response times can be computed as [16]:

X1 = X(1,1) / V(1,1); # class 1 throughput
X2 = X(2,1) / V(2,1); # class 2 throughput
XX = X1 + X2; # system throughput
R1 = dot(R(1,:), V(1,:)); # class 1 resp. time
R2 = dot(R(2,:), V(2,:)); # class 2 resp. time
RR = N / XX; # system resp. time

dot(X,Y) computes the dot product of two vectors. R(1,:) is the first row of matrix R and
V(1,:) is the first row of matrix V, so dot(R(1,:), V(1,:)) computes

∑
k R1,kV1,k.

For β1 = 0.1 we obtain X1 = 0.0044219, X2 = 0.010128, XX = 0.014550, R1 = 2261.5, R2 =
8885.9, RR = 6872.7. We can iterate the computations above for various values of β2 to obtain the
results shown in Figure 5, which is exactly the same as [10, Fig. 5, 6].

We can also compute the system power Φ = X/R, which defines how efficiently resources
are being used: high values of Φ denote the desirable situation of high throughput and low
response time. Figure 6 plots Φ as a function of β1; again, this figure is identical to [10, Fig.
8]. We observe a “plateau” of the global system power, corresponding to values of β1 which
approximately lie between 0.3 and 0.7. The per-class power exhibits an interesting (although not
completely surprising) pattern, where the class with higher population exhibits worst efficiency
as it produces higher contention on the resources.

UBLCS-2012-02 9

5 Conclusions

5e-07

1e-06

1.5e-06

2e-06

2.5e-06

3e-06

3.5e-06

0 0.2 0.4 0.6 0.8 1

P
o
w

e
r

Population mix β1 for Class 1

Class 1
Class 2
System

Figure 6. System Power as a function of the population mix β

5 Conclusions
In this paper we presented qnetworks, a QN analysis package for GNU Octave. qnetworks
includes functions for analysis of Markov Chains, single-station queueing systems and product-
and some non product-form QN models; exact, approximate and bound analysis of are sup-
ported.

qnetworks is available at http://www.moreno.marzolla.name/software/
qnetworks/ and can be used, modified and distributed under the terms of the GNU
General Public License (GPL) version 3.

References
[1] I. F. Akyildiz. Mean value analysis for blocking queueing networks. IEEE Transactions on

Software Engineering, 1(2):418–428, Apr. 1988.

[2] Y. Bard. Some extensions to multiclass queueing network analysis. In Proc. 4th Int. Symp. on
Modelling and Performance Evaluation of Computer Systems, volume 1, pages 51–62, Feb. 1979.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed networks
of queues with different classes of customers. J. ACM, 22(2):248–260, 1975.

[4] M. Bertoli, G. Casale, and G. Serazzi. JMT: performance engineering tools for system mod-
eling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15, 2009.

[5] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications. Wiley, 1998.

[6] J. P. Buzen. Computational algorithms for closed queueing networks with exponential
servers. Comm. ACM, 16(9):527–531, Sept. 1973.

[7] G. Casale. A note on stable flow-equivalent aggregation in closed networks. Queueing Syst.
Theory Appl., 60:193–202, December 2008.

[8] G. Casale, M. Gribaudo, and G. Serazzi. Tools for performance evaluation of computer sys-
tems: Historical evolution and perspectives. In Performance Evaluation of Computer and Com-
munication Systems. Milestones and Future Challenges. IFIP WG 8.3/7.3 International Workshop,
PERFORM 2010, volume 6821 of LNCS, pages 24–37. 2011.

[9] G. Casale, R. R. Muntz, and G. Serazzi. Geometric bounds: a non-iterative analysis technique
for closed queueing networks. IEEE Transactions on Computers, 57(6):780–794, June 2008.

UBLCS-2012-02 10

http://www.moreno.marzolla.name/software/qnetworks/
http://www.moreno.marzolla.name/software/qnetworks/

REFERENCES

[10] G. Casale and G. Serazzi. Quantitative system evaluation with java modeling tools. In
Proceedings of the second joint WOSP/SIPEW international conference on Performance engineering,
ICPE ’11, pages 449–454, New York, NY, USA, 2011. ACM.

[11] P. J. Denning and J. P. Buzen. The operational analysis of queueing network models. ACM
Computing Surveys, 10(3):225–261, Sept. 1978.

[12] J. W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.

[13] D. I. Heiman, N. Mittal, and K. S. Trivedi. Dependability modeling for computer systems.
In Proc. Ann. Reliability and Maintainability Symposium, pages 120–128, 1991.

[14] J. R. Jackson. Jobshop-like queueing systems. Manage. Sci., 50(12 Supplement):1796–1802,
2004.

[15] L. Kleinrock. Queueing Systems: Volume I–Theory. Wiley Interscience, New York, 1975.

[16] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice Hall, 1984.

[17] M. Marzolla and R. Mirandola. Performance aware reconfiguration of software systems. In
Proc. 7th European Perf. Eng. Workshop (EPEW), volume 6342 of LNCS, pages 51–66. Springer,
2010.

[18] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain queuing networks.
Journal of the ACM, 27(2):313–322, Apr. 1980.

[19] P. Schweitzer. Approximate analysis of multiclass closed networks of queues. In Proc. Int.
Conf. on Stochastic Control and Optimization, June 1979.

[20] H. Schwetman. Testing network-of-queues software. Technical Report CSD-TR-330, Purdue
University, Jan. 1 1980.

[21] H. Schwetman. Implementing the mean value algorithm for the solution of queueing net-
work models. Technical Report CSD-TR-355, Purdue University, Feb. 5 1982.

[22] J. Zahorjan, K. C. Sevcick, D. L. Eager, and B. I. Galler. Balanced job bound analysis of
queueing networks. Comm. ACM, 25(2):134–141, Feb. 1982.

UBLCS-2012-02 11

	 Introduction
	 Design Principles
	 Package Content
	 Markov chains
	 Single station queueing systems
	 Queueing Networks

	 Examples
	 Reliability Analysis with Markov chains
	 Bound Analysis
	 Multiclass QN Analysis

	 Conclusions

