
UML-PSI: the UML Performance SImulator

Moreno Marzolla Simonetta Balsamo
Dipartimento di Informatica

Universit̀a Ca’ Foscari di Venezia
via Torino 155, 30172 Mestre (VE), Italy

marzolla@dsi.unive.it, balsamo@dsi.unive.it

Abstract

In this paper we describe UML-Ψ, a software perfor-
mance evaluation tool based on process-oriented simula-
tion. The tool can be used to evaluate performances of soft-
ware systems described as annotated UML diagrams. UML-
Ψ transforms the software model into a performance model
based on process-oriented simulation, executes the perfor-
mance model and collects results. Performance results are
inserted into the software model as tagged values associ-
ated to the relevant UML elements.

1. Introduction

Quantitative analysis of software systems is being rec-
ognized as an important issue in the software develop-
ment process. Performance evaluation should be highly in-
tegrated in the software development process [7]. The soft-
ware engineer should be provided with integrated perfor-
mance and specification environments where the perfor-
mance evaluation tools should have the following charac-
teristics:

• No special performance modeling expertise required:
the tool should be easy to use, requiring little or no spe-
cific performance modeling knowledge and skills from
the user.

• Automation: the integrated software performance tool
should be mostly automatic; the user should not be re-
quired to perform actions or computations by hand.

• Feedback: the performance results should be automat-
ically reported at the software architecture level.

UML-Ψis a software performance evaluation tool which
uses UML for software specification, and process oriented
simulation as the performance model. The approach inte-
grates UML software specification given by a set of an-
notated diagrams, with a discrete-event simulation model
whose solution gives a set of average performance indices
providing automatic feedback at the software architectural

level. The UML-Ψ tool can be used by the software de-
signer and the performance modeler to generate and eval-
uate the performance model.

The software model is drawn, annotated and modified
using a UML CASE tool which must be capable of export-
ing the model in XMI format [6]. UML-Ψ considers the fol-
lowing UML diagrams to derive the performance model:
Use Case, Activity and Deployment diagrams. UML-Ψ
parses the annotated UML model, which must be exported
in XMI format from the CASE tool, and builds a process-
oriented simulation model of the software system. Simu-
lation parameters are derived from the annotated UML dia-
grams. The simulation program is finally executed and com-
putes a set of performance indices of the software system
under study: resources utilization and throughput, and the
mean execution time of actions and Use Cases. Simulation
results are reported back into the original software model
as UML tagged values associated to the relevant elements.
This allows us to give a user-friendly feedback at the soft-
ware design level. Figure 1 illustrates a schematic represen-
tation of UML-Ψ usage.

UML CASE Tool XMI UML−PSI

Export Import

Performance
Results

Import

Figure 1: Using UML-Ψ

2. Performance Modeling

The UML-Ψ tool builds a process-oriented simula-
tion model [2] from UML specifications. The performance
model is composed by a set of concurrent, interacting sim-
ulation processes. We define three types of simulation pro-
cesses: workloads, actions and resources. Workload pro-
cesses generate sequences of requests to the system; work-



loads may be open or closed. An open workload represents
an infinite stream of requests being generated from out-
side the system, while a closed workload is made of a fixed
number of requests circulating through the system. Each re-
quest, upon arrival, triggers the execution of a sequence of
actions. An action is a request of service from an active re-
source (e.g., processor) or acquisition/release of a passive
resource (e.g., memory).

UML-Ψ parses Use Case, Activity and Deployment di-
agrams in order to build an internal representation of the
UML model from which it derives a process-oriented simu-
lation model. The simulation model has the same structure
as the software specification, due to an almost one-to-one
mapping between UML elements and simulation processes.
Use Case diagrams represent workloads, Activity diagrams
represent the actions being triggered by requests, and De-
ployment diagrams represent active and passive resources.
The UML model has to be annotated according to a sub-
set of the Profile for Schedulability, Performance and Time
Specification [5] as described in [4, 1]. Annotations are in-
serted into the UML model as stereotypes and tagged val-
ues; such annotations must be provided by the user before
the performance model generation phase.

The UML-Ψ tool executes the simulation model by us-
ing both user-supplied parameters, that are given as tagged
values associated to UML elements, and the parameters in-
cluded in a configuration file. Simulation parameters in-
clude, but are not limited to, the number of times an ac-
tion is repeated, the service demand of actions, expressed as
random variables with a given distribution, scheduling poli-
cies of active resources, and others. We consider the spec-
ification of tag values by the Tag Value Language (TVL),
a subset of the Perl language [8] proposed in [5]. This is
motivated by the need to express such values in a complex
way, for example by using expressions such as arithmetic
or boolean ones. The configuration file is a Perl program
which is executed before evaluating tag values. In this way
it is possible to define variables in the configuration file and
use them inside tag values.

The simulation model is implemented as a C++ program,
using the facilities provided by the general-purpose simula-
tion library described in [3]. The simulation model is even-
tually executed and the computed results are inserted into
the XMI document as tagged values associated with the
UML elements they refer to. Therefore the results of per-
formance analysis are available to the user which can open
again the UML model by using the CASE tool, so allowing
the software designer to check whether the software archi-
tecture meets the performance goal and possibly repeat the
process for further analysis of modified software systems.
Simulation results are computed with steady state analysis
and with confidence intervals [2].

3. Conclusions

In this paper we briefly introduced UML-Ψ, a
simulation-based performance evaluation tool for early as-
sessment of software performances. UML-Ψ transforms
annotated UML diagrams into a simulation model, imple-
ments the model using process-oriented simulation and
evaluates the performance model. Simulation results are in-
serted back into the UML model as new tagged values
associated to the relevant UML elements.

Currently we are extending UML-Ψ in several direc-
tions. First, we are planning to use a larger subset of the an-
notations from [5], in order to allow the modeler to describe
the software in more detail using different kinds of UML di-
agrams. We are also trying to integrate UML-Ψ with other
software performance tools based on different performance
models derived from the same UML model.The ultimate
goal is to integrate different kinds of quantitative software
analysis techniques into a general framework allowing dif-
ferent kinds of quantitative and qualitative analysis, e.g., re-
liability, on the same software specification. Finally, we are
evaluating how the UML-Ψ tool, and the associated soft-
ware performance evaluation approach, can be extended to
cope with the forthcoming UML 2.0.

AcknowledgmentsThis work has been partially supported
by MIUR research project FIRB “Performance Evalua-
tion of Complex Systems: Techniques, Methodologies and
Tools”.

References

[1] S. Balsamo and M. Marzolla. Simulation modeling of
UML software architectures. In D. Al-Dabass, editor,Proc.
of ESM’03, the 17th European Simulation Multiconference,
pages 562–567, Nottingham, UK, June 9–1 2003.

[2] A. M. Law and W. D. Kelton.Simulation Modeling and Anal-
ysis. McGraw–Hill, 3rd edition, 2000.

[3] M. Marzolla. libcppsim : a Simula-like, portable process
oriented simulation library in C++. In G. Horton, editor,Proc.
of ESM’04, the 18th European Simulation Multiconference,
Magdeburg, Germany, June13–16 2004.

[4] M. Marzolla. Simulation-Based Performance Modeling of
UML Software Architectures. PhD Thesis TD-2004-1, Dip. di
Informatica, Universit̀a Ca’ Foscari, Venezia, Italy, Feb. 2004.

[5] Object Management Group (OMG). UML profile for schedu-
lability, performance and time specification. Final Adopted
Specification ptc/02-03-02, OMG, Mar. 2002.

[6] Object Management Group (OMG). XML Metadata Inter-
change (XMI) specification, version 1.2, Jan. 2002.

[7] C. U. Smith and L. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Addison-Wesley, 2002.

[8] L. Wall, T. Christiansen, and J. Orwan.Programming Perl.
O’Reilly & Associates, third edition, July 2000.


	Introduction
	Performance Modeling
	Conclusions

