
A RESTful Approach to the OGSA Basic
Execution Service Specification

Sergio Andreozzi
INFN-CNAF

Viale Berti Pichat 6/2, I-40127 Bologna, Italy
Email: sergio.andreozzi@cnaf.infn.it

Moreno Marzolla
INFN Padova

Via Marzolo 8, I-35131 Padova, Italy
Email: moreno.marzolla@pd.infn.it

Abstract—The OGSA–Basic Execution Service (BES) specifi-
cation has recently been proposed by the Open Grid Forum
(OGF) as the standard job submission and management interface
across different Grid middlewares. This specification defines a
Web Service interface in terms of a Web Services Description
Language (WSDL) document for creating, monitoring and man-
aging computational jobs (called activities), and for querying the
capabilities of the BES service itself. In this paper, we propose
an alternate incarnation of the BES functionalities according to
the Representational State Transfer (REST) architectural style.
We describe the mapping of the BES operations in terms of
HTTP actions on resources. We compare the REST formulation
of BES with the standard WS-based one. We show that all BES
operations can be expressed in a very natural way using the
standard HTTP protocol and following the REST approach;
moreover, we present useful extensions that are expected to
appear in the near future.

I. INTRODUCTION

The Grid paradigm emerged in the last decade for the
integration, utilization and management of heterogeneous net-
worked resources part of different administrative domains
to be made available to virtual organizations [1]. Different
middleware suites have been developed to support the Grid
paradigm. They expose the various resources using a common
abstraction layer offering a uniform access to them.

A job submission and monitoring service is one of the
basic functionalities of most Grid systems available today.
This service allows users to submit computational jobs to a
Grid, manage them and monitor their progress. While the exact
notion of “job” usually varies from Grid to Grid, there are
many common features which can be isolated. For example, a
“job” usually consists of running some executable program on
a given processor; the program may operate on one or more
input data files, and produce one or more output data files.
Moreover, job requirements (minimum available memory, disk
space, CPU speed) may be part of the job description.

Job management involves suspending, resuming, or remov-
ing a Grid job. Monitoring involves checking the current
status of the job. Moreover, job submission services also
provide operations to handle the service itself, e.g., disabling
further job submissions or check the service capabilities. The
different Grid middleware platforms offer different interfaces
for job submission and monitoring services today. This makes
interoperability between different Grids extremely difficult:

jobs originating on a Grid system cannot directly be submit-
ted to another Grid relying on a different middleware, both
because the job description notation is different and because
the interfaces to the job submission services are incompatible.

The OGF is the standard body which is defining specifica-
tions to enable interoperability both at the technological level
and at the functional level. The overarching document defines
the Open Grid Services Architecture (OGSA)1 [1] in terms of
a set of capabilities required to realize the Grid paradigm based
on the principles of Service Oriented Architecture (SOA) and
incarnated in the Web Services (WS) technologies.

Among the defined capabilities, the Execution Management
Services are concerned with the problems of instantiating
and managing to completion units of work. The related core
specifications are the BES and the Job Submission Description
Language (JSDL). JSDL is an XML-based notation for de-
scribing computational jobs [2], while BES is a WSDL-based
interface for a Job Submission and Monitoring service [3].
In particular, the latter defines two WS port-types, which are
shown in Table I with their corresponding operations. The
BES-Management port-type is used to control the BES service
itself, that is, starting and stopping the service. This port-
type should normally be used by the system administrators.
The BES-Factory port-type defines operations for creating
and manipulating activities and set of activities. Moreover,
it contains an operation (GetFactoryAttributeDocument) for
retrieving attribute information about the BES service itself.

The BES CreateActivity operation returns an Endpoint Ref-
erence (EPR), which can be used by clients to refer to this
activity. During the execution, activities traverse a number
of states. The basic state model comprises the following
states: (1) pending, the service has created the activity, but
the execution is not yet started; (2) running, the activity is
executing in some computational resource; (3) finished, the
activity successfully completed the execution; (4) terminated,
the activity has been terminated by calling the TerminateAc-
tivity BES operation; (5) failed, the activity has failed due
to some error or failure. Finished, terminated and failed are
terminal states. The state model can be extended to consider
new states.

1OGSA, Open Grid Services Architecture, OGF and Open Grid Forum are
trademarks of the OGF



TABLE I
BES PORT-TYPES AND OPERATIONS

BES-Management Port-type
StartAcceptingNewActivities Administrative operation: Request that the BES service starts accepting new activities
StopAcceptingNewActivities Administrative operation: Request that the BES service stops accepting new activities
BES-Factory Port-type
CreateActivity Request the creation of a new activity; in general, this operation performs the submission of a new computational job,

which is immediately started
GetActivityStatuses Request the status of a set of activities
TerminateActivities Request that a set of activities be terminated
GetActivityDocuments Request the JSDL document for a set of activities
GetFactoryAttributeDocument Request the XML document containing the properties of this BES service

The current state of art in Grid is characterized by middle-
ware providers all adopting the SOA paradigm with particular
incarnation in WS technologies. WS technologies are widely
adopted, nevertheless they introduce a high level of complex-
ity due to the richness of modeled functionalities and the
availability of competing specifications. The interoperability
is therefore still a challenging task because either different
middleware suites rely on different set of WS specifications
or because of incompatibilities about how the specifications
are implemented. WS technologies are not the only possi-
ble incarnation of the SOA paradigm on top of the Web
architecture. Another approach which is gaining popularity
is the adoption of plain HTTP-based applications designed
to comply with the REST architectural style. REST is a
coordinated set of architectural constraints that attempts to
minimize latency and network communication, while at the
same time maximizing the independence and scalability of
component implementations [4]. Many distributed applications
that successfully build on RESTful HTTP technology are
today available, thus implying that WS technologies are not
the only solution for Web-based distributed systems.

In this paper, we describe how the BES functionalities can
be mapped into a RESTful HTTP-based approach. The goal is
to show that this solution is viable and reduces the complexity
of the considered service, while bringing in all the benefits of
the REST-based approach.

II. RESTFUL BES

The REST architectural style was derived from the Web ar-
chitecture and can be applied to different systems to obtain the
following benefits: scalability of component interactions, gen-
erality of interfaces, independent deployment of components,
and intermediary components to reduce interaction latency,
enforce security, and encapsulate legacy systems [4]. Due to
its origins, it is a natural application to distributed systems
based on the HTTP protocol [5], nevertheless it can be applied
also to WS-based distributed systems. The core architectural
elements of REST are: (1) Resource, that is any entity which
is needed to be identified; it is a conceptual mapping to a set
of entities, not the entity that corresponds to the mapping at
any particular point in time; (2) Resource Identifier, that is
a Uniform Resource Identifier (URI) identifying a resource;

(3) Resource Representation, that is data and/or metadata
describing the current or intended state of a resource.

The main constraints posed by this architectural style are
(see [4] for a complete list): stateless, each request from
client to server must contain all of the information necessary
to understand the request, and cannot take advantage of any
stored context on the server; cache the data within a response
to a request be implicitly or explicitly labeled as cacheable
or non-cacheable; if a response is cacheable, then a client
cache is given the right to reuse that response data for later,
equivalent request; uniform interface the operations identify
only actions with a well-defined semantics and properties of
safety and idempotency; no scoping information is provided
in the operation name. In the remaining part of this section,
we propose the mapping of the BES specification into the
RESTful HTTP protocol, that is using the HTTP protocol with
respect to the REST architectural style.

The methodology adopted to achieve this mapping consists
of the following steps: (1) identify the interesting resources;
(2) name the resources with URIs; (3) define the operations
on the resources; (4) design the representations accepted from
the clients; (5) design the representations served to the client;
(6) define error conditions to be handled.

A. Modeling Resources and Resource Identifiers

We now present the definition of the resources that we
consider useful in the RESTful BES; we also propose the URI
structure for them (see Table II).

We let /activities represent the list of all activities
present in the service; /activities/id is the current
representation of a specific activity (id is the local identifier
of the activity); /activities/id/submitted denotes
the JSDL document which was used to instantiate the activity;
/activities/id/status is the current status of the
activity; / is the representation of the service capabilities (BES
factory attributes document); /status] is the current status
of the BES service; /activities/id1[;idj]* denotes
the current representation of the activities identified by idx;
finally, /activities/id1/status[;idj/status]∗ is
the current representation of the status of activities identified
by idn.



TABLE II
RESTFUL BES RESOURCES

/ representation of the service capabilities (BES factory attributes document)
/status current status of the BES service
/activities the list of all activities present in the service submitted to the given share (e.g., batch queue)
/activities/id the current representation of activity id (id is the local identifier of the activity)
/activities/id/submitted the JSDL document which has been used to instantiate activity id
/activities/id/status the current status of activity id
/activities/id1[;idj]* the current representation of the activities identified by idn

/activities/id1/status[;idj/status]∗ the current representation of the activity statuses identified by idn

B. Modeling Operations

In this section, we describe how the BES operations can be
mapped into standard HTTP/1.1 operations (GET, PUT, POST,
DELETE) with respect to the REST constraints. The mapping
of the WS-based BES operations onto the RESTful BES
operations is summarized in Table III.

The BES specification defines operations that act not only
on single activities, but also on set of activities (see Table I).
In particular, GetActivityDocuments, GetActivityStatuses and
TerminateActivities operate on a set of activities at the same
time. This approach enables for instance to terminate multiple
activities with a single BES operation invocation. This feature
is particularly desirable as it reduces round-trip delays caused
by multiple individual request/response interactions. It also
allows the BES service to process operations more efficiently
by batching them. When considering the mapping of the
WSDL-based BES operations into HTTP operations, we need
to take into account that the HTTP protocol operates on a
single resource and does not support operations on a collection
of resources. This issue is typically faced by defining a
resource which maps to a set of entities (see Section II-A).

C. Modeling Representations and Status Codes

We now analyze each operation listed in Table III and
describe the exchanged resource representations together with
the involved status codes.

As regards the HTTP status codes, if not differently spec-
ified, we act as follows: for each operation, the server re-
turns the 401 Unauthorized HTTP response code if the
user is unauthorized to access the whole BES service; this
corresponds to the NotAuthorizedFault BES fault; for
each operation involving the client sending an XML document
in the request body (e.g., PUT /activities/), the server
returns a 400 Bad Request status code when the XML
document in the request body is invalid.

Another general case to be considered is the one about
operations working on multiple entities, for which individual
status codes are needed (e.g., a terminate operation on an
activity can be successful while on another can fail). The
HTTP protocol does not provide native support for this case,
in fact extensions were proposed to solve this issue (see
WEBDAV specification and the multi-status code [6]). In this
context, we prefer to act as follows: multiple response values
are inserted into the HTTP response body. The HTTP 202

Accepted status code will be issued by the BES service
to denote that the request has been accepted and processed,
and to signal the client that the results are contained in the
response body.
• GET /activities/: this operation retrieves the list
of all activities submitted by the caller which have not yet
been removed. This operation has no equivalent in the BES
specification. A 200 OK HTTP response code denotes that
the request completed without errors. In this case, the response
body contains the list of URIs corresponding to the base path
of each activity owned by the caller, rendered as a text/xml
document with the following structure:
<activities>
<activity>/activity/ID</activity>*

</activities>

• PUT /activities/: this operation requests the cre-
ation of a new activity. This is equivalent to the CreateActivity
BES operation. The HTTP request body contains a BES
ActivityDocument XML element as defined in [3]. This
element basically contains a jsdl:JobDefinition sub-
element which describes the structure and requirements of the
activity being created [2]. The format of the request body is
the following:
<bes:ActivityDocument>
<jsdl:JobDefinition>
...

</jsdl:JobDefinition>
<xsd:any> *

</bes:ActivityDocument>

The HTTP response code can be one of the following:
• 201 Created Upon successful creation of the activity,

this status code is returned (the HTTP Location header
will contain the URI for the newly created activity)

• 501 Not Implemented This response code corre-
sponds to the UnsupportedFeatureFault fault re-
turned by the BES when it does not support some of the
features requested by the JSDL; the HTTP response body
should describe the features which are not supported

• 503 Service Unavailable This response code
corresponds to the NotAcceptingNewActivities
fault returned by the BES if it is not accepting new
activities.

Upon successful creation (HTTP return code 201
Created), the Location: URI header is used to



TABLE III
RESTFUL BES ACTIONS

Resource Operation Description BES counterpart
/activities/ GET List all activities of the requester none

PUT Create a new activity CreateActivity
/activities/id1[;idj]∗ GET Get the current representation (JSDL document)

of one or more activities
GetActivityDocuments

DELETE Remove (purges) one of more activities none
/activities/id1/status[;idj/status]∗ GET Current status of a set of activities GetActivityStatuses

POST Change the status of a set of activities (e.g.,
terminate the activities)

TerminateActivities

/ GET Get the attributes of the BES service GetFactoryAttributesDocument
/status GET Get the status of the BES service IsAcceptingNewActivities

POST Change the status of the BES service (e.g., stop
accepting new activities)

SetAcceptingNewActivities

return to the client the base URI of the newly created activity,
as follows:

HTTP/1.1 201 Created
Location: /activities/ACT001

• DELETE /activities/id1[;idj]∗: this operation is
used to remove (purge) one or more activities from the BES
service. The removal of the activities includes also the removal
of all local files and directories that were generated by the
activity itself. Note that the current BES specification does
not provide any operation for purging a terminated activity. A
202 Accepted HTTP status code denotes that the request
has been accepted. The response body will contain the detailed
status information related to the removal of each individual
activity. The response body is an XML document containing
one <activity> element for each activity referenced in
the request URI. If the <activity> element contains a
<UnknownActivityIdentifierFault> element, then
the activity was not found. Other kind of fault elements could
be defined to notify the caller of other, implementation-related
errors.

<deleteResponse>
<activity id="id">
<UnknownActivityIdentifierFault.../>?

</activity>
</deleteResponse>

• GET /activities/id1[;idj]∗: this operation gets the
current representation of an activity, in the form of the JSDL
document which describes the activity. This is equivalent to
the GetActivityDocuments BES operation. Note that the current
representation of an activity may be different from the original
one. This is because the BES service might have processed
and modified the original JSDL to reflect the current status of
an activity. The original representation for activity id is thus
accessible at the URI /activities/id/submitted. The
202 Accepted status code denotes that the request has been
accepted. In this case, the response body contains an XML
document with the following structure:

<ActivityDocumentResponses>
<ActivityDocumentResponse>

<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityDocument>
{jsdl:JobDefinition}

</ActivityDocuemnt> |
<UnknownActivityIdentifierFault/>

</ActivityDocumentResponse>*
</ActivityDocumentResponses>

The response document contains the URI and the JSDL
document which was used to instantiate the activity or
the current one (depending on the request). If the activ-
ity does not exist, the JSDL document is replaced by a
<UnknownActivityIdentifierFault> element.

• GET /activities/id1/status[;idj/status]*:
this operation retrieves the current status of a set of activities.
This is equivalent to the GetActivityStatuses BES operation.
With the Cache-Control: must-revalidate HTTP
header, the user can request the BES server to ignore any
cached status information, and explicitly check for the job
status. The HTTP response code can be one of the following:

• 202 Accepted The operation has been accepted by
the BES service; results are contained in the response
body.

• 412 Precondition Failed The
Cache-control: must-revalidate request
header was supplied by the client, but the server does
not support the possibility of explicitly polling the job
status.

The BES server might use the Expires HTTP header to
inform the client that the status information is valid until the
next update. If the server is employing polling to query the
status of the activities, than it might know the time of the
next (possible) status update, and inform the client through the
Expires header. If the response code is 202 Accepted,
the HTTP response body contains an XML document with the
following structure:
<ActivityStatusResponse>
<ActivityStatus>

<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityStatus>
{bes:ActivityStateType}

</ActivityStatus> |



<UnknownActivityIdentifierFault.../>
</ActivityStatus> *

</ActivityStatusRespose>

where <ActivityIdentifier> contains the URI
of the activity (e.g., /activities/ACT001). If the
operation was successful, the <ActivityStatus> element
contains a child element of type ActivityStateType.
In case of errors, the <ActivityStatus> element is
replaced by <UnknownActivityIdentifierFault/>,
which denotes that the activity ID does
not exist. Both ActivityStatus and
UnknownActivityIdentifierFault are defined
as in the BES specification [3].

• POST /activities/id1/status[;idj/status]∗:
this operation changes the status of one or more activities.
This is similar to the TerminateActivities BES operation,
except that the REST counterpart would allow the user
to request an arbitrary status change. This is useful in
conjunction with specialized BES state models allowing
for example an activity to be suspended/resumed at any
time. Currently, the BES specification does not provide
operations for changing an activity status, except for the
TerminateActivities. The HTTP Request body is as follows:

<StatusChangeRequest>
<ActivityStatus>
<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityStatus>

{bes:ActivityStateType}
</ActivityStatus>

</ActivityStatus> *
</StatusChangeRequest>

The 202 Accepted response code means that the operation
has been accepted by the BES service; results are contained
in the response body, according to the following structure:

<StatusChangeResponse>
<ActivityStatus>
<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityStatus>

{bes:ActivityStateType}
</ActivityStatus> |

<UnknownActivityIdentifierFault.../>
</ActivityStatus> *

</StatusChangeResponse>

For each successfully applied status change, the response
document reports the URI of the activity with the new (up-
dated) status; in case of failure, the URI is followed by an
<UnknownActivityIdentifierFault> element.

• GET /status: this operation is used to check the status
of the BES service, that is, whether the server is accepting new
activities. This is equivalent to the IsAcceptingNewActivities
BES operation. If the response code is 200 OK, the HTTP
response body will contain the single XML element as follows:

<ServiceStatus status="open" | "closed"/>

where the status="open" attribute denotes that the service
is accepting new activities, while status="closed" de-
notes that the service does not accept creation of new activities.

• PUT /status: this operation is used to change the
status of the BES server. This operation is equivalent to the
StartAcceptingNewActivities and StopAcceptingNewActivities
BES operations.
The request body contains a single <ServiceStatus>
XML element, with attribute status="open" to denote
that the service should (re)start accepting new activities, and
status="closed" if the service should refuse creation of
new activities.

<ServiceStatus status="open" | "closed"/>

• GET /?schema=S: this operation is used to request the
capabilities of the BES service. In its simplest form, (GET /)
it returns the capabilities of the BES service as an XML docu-
ment of type BESResourceAttributesDocumentType
as described in [3]. This document contains a summary of
the capabilities of the BES service (number of contained
resources, operating system name, number of CPUs and so
on). If the BES implementation supports additional resource
models (allowed by the specification [3]), the client can access
the alternate resource descriptions by using the ?schema=S
query string, possibly combined with the Accept: HTTP
header to specify the resource rendering format. For example,
to get an XML rendering of a GLUE resource description [7]
the client can issue this request:

GET /?schema=glue HTTP/1.1
Host: bes-service.example.org
Accept: text/xml

To get a text rendering of the same resource, the client
would issue the following request:

GET /?schema=glue HTTP/1.1
Host: bes-service.example.org
Accept: text/plain

III. EXTENSIONS AND SECURITY CONSIDERATIONS

Some optional extensions are described in the BES spec-
ification. In this section, we describe how these extensions
can be implemented in a RESTful way; we also make some
considerations about the security infrastructure which can be
used to authenticate interactions with the service.

A. Idempotent Execution

The BES specification allows an optional extension to
support idempotent execution semantics. This extension can be
used to ensure that issuing a CreateActivity request multiple
times for the same activity results in the creation of at most
one instance of the activity. It requires that a user-generated
request ID should be associated to the CreateActivity request,
so that the BES server can ignore duplicate requests.

Idempotent Execution can be implemented within the stan-
dard HTTP protocol in different ways. The Post Exactly Once
(POE) protocol [8] works by having the server generate a
unique URI for a POE resource, which is then used by the
client to perform the actual POST operation. Should the server
receive a duplicate POST for the same URI, it will return to the
client a 405 Method Not Allowed. While this approach



has the advantage of being almost completely transparent to
client applications (no need to send any special HTTP header),
it requires an additional request-response iteration for the
client to get the unique URI to user for the POST request.

Another solution would be that of inserting a client-
generated unique ID in the HTTP request Pragma header,
as follows:

POST /activities/ HTTP/1.1
Host: bes-service.example.org
Pragma: IdempotentActivityID=client_defined_id_01
...

As in the POE protocol, we let the service return a 405
Method Not Allowed if it receives a duplicate request.
The response header will also contain a Location field with
the complete URI of the existing (already created) activity.

B. Lifetime Management

The Lifetime Management extension allows the client to
request a specific maximum lifetime for an activity. After the
lifetime expires, the server is allowed to remove the associated
activity without further notice. Similarly to the Idempotent
Execution extension, the maximum resource lifetime can be
defined with an appropriate HTTP header in the request
message, as follows:

POST /activities/ HTTP/1.1
Host: bes-service.example.org
Pragma: InitialTerminationTime=<datetime>
...

If the server, for any reason, is unable to comply with
the requested activity lifetime, it will reply with a 400 Bad
Request error code. After the expiration of the activity
lifetime, subsequent attempts to access the resource generate
a 410 Gone HTTP status code, denoting that the server
permanently removed the requested activity.

C. Security Considerations

Although security considerations are outside the scope of
the BES specification, they play a fundamental role in the
actual deployment and usage of Web-based services. The use
of HTTP over TLS/SSL [9] allows the clients and the RESTful
BES service to mutually authenticate using digital certificates.
In particular, this allows the service to ensure that only the
owners can access the resources.

Another security issue may arise when the BES service
needs to access remote data on behalf of the user, for example,
when the submitted JSDL includes data staging elements. In
this case, it is often not appropriate that the BES service
authenticates as itself with respect to the remote storage
service; for this reason, many Grid systems employ the so
called credential delegation based on RFC3820 proxy certifi-
cates [10]. Credential delegation is a two-step process: first,
the client (delegator) asks the service (delegate) to create a
public-private key pair and uses it to generate a Certificate
Signing Request. Then the delegator signs the certificate with
his private key, and sends the signed certificate to the service.

The delegation process can be implemented in a RESTful way
very easily, as sketched here:

1) First, the user executes a GET /delegation opera-
tion to request the Certificate Signing Request.

2) The signed certificate is sent back to the service with
a PUT /delegation/id request. Here, id denotes a
user-defined delegation ID, which can be later used by
the client to refer to this delegated credential (e.g., by
inserting it into an appropriate HTTP header).

IV. CONCLUSIONS

In this paper we considered the BES specification, which
is the standard interface to be adopted by the different Grid
middlewares for interoperable job management. The spec-
ification, in its current form, relies on WS technologies,
in particular it is described using a WSDL grammar. We
presented a mapping of the BES functionalities into a REST-
based approach using the HTTP protocol. We showed that both
the core BES functionalities and the optional extensions can be
implemented in a REST compliant way. The REST approach
is generally considered simpler and easier to implement than
the WS-based counterpart; moreover, REST services could in
principle be tested using any HTTP client (for example an
ordinary Web browser) without the need to develop specialized
client applications. Future work will expand the security
considerations (they were intentionally left out from the BES
specification [3], but are nevertheless fundamental for any
real-world implementation), and the development of an actual
RESTful BES prototype.

REFERENCES

[1] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw,
B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, and
J. Von Reich, “The Open Grid Services Architecture (OGSA), version
1.5,” OGF GFD-R.80, Jul 2006.

[2] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. Mc-
Gough, D. Pulsipher, and A. Savva, Job Submission Description Lan-
guage (JSDL) Specification, Version 1.0, Nov. 2005, OGF GFD-R.056.

[3] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse,
S. Pickles, D. Pulsipher, C. Smith, and M. Theimer, OGSA Basic
Execution Service, Version 1.0, Nov. 2008, OGF GFD-R.108.

[4] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
pp. 115–150, 2002.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P. Leach, and T. Berners-Lee, Hypertext
Transfer Protocol–HTTP/1.1, Jun. 1999, RFC 2616,
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[6] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, HTTP
Extensions for Distributed Authoring–WEBDAV, Feb. 1999, RFC 2518,
http://www.webdav.org/specs/rfc2518.html.

[7] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. Konya,
M. Litmaath, P. Millar, and J. Navarro, “OGF GLUE 2.0 Specification,”
OGF Proposed Recommendation in Public Comment.

[8] “Post Once Exactly (POE),” Mar.
19 2005, http://www.mnot.net/
drafts/draft-nottingham-http-poe-00.txt.

[9] T. Dierks and E. Rescorla, The Transport Layer Security
(TLS) Protocol, Version 1.2, Aug. 2008, RFC 5246,
http://tools.ietf.org/html/rfc5246.

[10] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson, Internet
X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile, Jun.
2004, RFC 3820, http://www.ietf.org/rfc/rfc3820.txt.


