Performance Evaluation of UML Software Architectures with Multiclass Queueing Network Models

Simonetta Balsamo
Moreno Marzolla
Dipartimento di Informatica
Università Ca' Foscari di Venezia

{balsamo,marzolla}@dsi.unive.it
Software Performance Modeling

1. Software Model
2. UML Model
3. Performance Results
4. QN Model
5. Model Evaluation

- Modeling Algorithm
- Feedback
Performance Modeling Framework

Annotated UML Model

- Simulation Model
- Sim Model Execution
- QN Model
- QN Model Evaluation

Performance Results
Performance Modeling with multiclass QN

• Starting point
 ♦ Use Case diagrams (workloads)
 ♦ Deployment diagrams (hardware model)
 ♦ Activity diagrams (system execution model)

• Target notation
 ♦ Mixed Multiclass QN model
 ♦ Use Case diagrams ➤ Workloads
 ♦ Deployment diagrams ➤ Service centers
 ♦ Activity diagrams ➤ Topology
Why?

- Performance model generation can be done efficiently
 - $O(\#transitions + \#action\ states)$
- Performance model can be solved efficiently
 - If some constraints are satisfied
- The approach uses standard UML SPT profile annotations
 - Can be integrated with existing software performance modeling frameworks based on the profile
Translating UC diagrams

<<PAopenLoad>>

PAoccurrence = \(\lambda \)

<<PAclosedLoad>>

PApopulation = \(N \)
PAextDelay = \(Z \)
Translating Activity diagrams
the easy case

A1 → R1
A2 → R2
A3 → R3

R1 → R2 → R3
Translating Activity diagrams the difficult case
Outline of the transformation algorithm

• Translate one Activity diagram at a time
 ♦ Each Activity diagram corresponds to a single chain
• Resources correspond to service centers
• Translate an Activity diagram as follows
 ♦ All actions requesting service from the same resource receive a unique label in the range [1..k]
 ♦ If there is a transition with probability p from an action with label r requesting service from resource i to an action with label s requesting service from resource j
 • Set $P[i,r,j,s] = p$
Example / 1
Example / 2
Example / 3
Example / 4
Example / 4

1-p

p
Example / 5
Example / 6
Example / 7

The diagram illustrates a system where the probability of success is denoted by p, and the probability of failure is $1-p$. The system transitions through different states, with the success probability p and the failure probability $1-p$ at each stage.

1. The first stage has a transition with probability p.
2. The second stage has a transition with probability $1-p$.
3. The third stage has a transition with probability p.
4. The final stage has a transition with probability $1-p$.

The system is represented with circles and arrows indicating the flow of states based on the probabilities.
Example / 8

Diagram showing a flowchart with nodes and connections, illustrating a probabilistic process with parameters p and $1-p$. The diagram includes multiple loops and conditional paths, typical of a probabilistic model or algorithm.
Conclusions and Future Works

- We proposed an algorithm for translating annotated UML specifications in multiclass, multichain QN performance models.

- Future works include:
 - Integration of the approach in a general framework.
 - Partly done, nearly incorporated in our tool UML-Ψ.
 - Extend the approach to UML2.0 composite structure diagrams (and the new QoS profile?)
Thank you!