Agent-Based Systems

Moreno Marzolla
Dip. di Informatica—Scienza e Ingegneria (DISI)
Università di Bologna

http://www.moreno.marzolla.name/

Slides credit: Ozalp Babaoglu
Agents

• An Autonomous Agent is an entity that interacts with its environment (including other agents)
 – without any central coordination
 – using local information only
 – without following any global plan

• Behavior may be
 – “Optimal” based on rational choices
 – Non-optimal (simple) and involve interacting with (and changing) the environment

• Some global outcome may result (often surprisingly) from simple local interactions
Simple Models

- Termites
- Langton's Ants
- Schelling’s Segregation Model
- Flocking Vee formation
- Fireflies
Termites
Termites

• Wood chips distributed over a 2-Dimensional space
• Rules for termites:
 – Wander randomly until the termite bumps into a wood chip
 – If the termite is carrying a wood chip, it drops the chip and continues to wander
 – If the termite is not carrying a wood chip, it picks up the one that it bumped into and continues to wander
• The rules above are so simple that nothing useful could possibly come out
 – ...or can it?

Mitchel Resnick (MIT)
Termites NetLogo model
Sample Models → Biology → Termites
Termites
Langton's Ant
Langton’s Ant

- 2D grid, each square can be black or white
- Ants have a direction and can turn right or left, move one square in the current direction, flip color of square they are on
- Rules:
 - If current square “white”
 - Flip the color of square
 - Turn 90° right
 - Move forward one unit
 - If current square “black”
 - Flip the color of square
 - Turn 90° left
 - Move forward one unit
Langton’s Ant

[Diagram showing the evolution of Langton's Ant on a grid]

Complex Systems
Langton’s Ant

Source: https://en.wikipedia.org/wiki/Langton%27s_ant
Langton's Ant
Sample Models → Computer Science → Vants
Langton's Ant

- **Simplicity**
 - During the first few hundred moves, the ant creates very simple symmetric patterns

- **Chaos**
 - After a few hundred moves, an irregular pattern of black and white squares appears. The ant traces a pseudo-random path until around 10,000 steps

- **Emergent order**
 - The ant starts building a recurrent "highway" pattern of 104 steps that repeat indefinitely.
 - All tested finite initial configurations eventually converge to the same repetitive pattern, suggesting that the "highway" is an attractor of Langton's ant (Cohen-Kung theorem)
Multiple Virtual Ants
Langton's Ant

- The rules are **time-reversible**
 - For each “current” configuration of the ant, there is exactly one “previous” configuration
 - The “arrow of time” can be reversed by simply reversing the direction of the ant(s)

- Langton's Ant is **universal**
 - An ant can simulate any boolean circuit
Segregation Model
Schelling’s Segregation Model

- Rectangular board with green turtles, red turtles and empty patches
- A turtle with less than a fraction X of neighbors of its color jumps to a randomly chosen empty patch
 - possibly triggering other turtles to jump
Agent-based model

- Rectangular grid of cells
 - Each cell either empty or occupied by red / green turtle

- Each red / green turtle prefers to have \textit{at least a fraction} X of neighbors of its color
 - Moore Neighborhood

- Example: $X = 0.4$

C jumps to a new position
C stays in the current position
Segregation Model
Sample Models → Social Science → Segregation
NetLogo segregation model results

- 25% neighbors same color
- 40% neighbors same color
- 65% neighbors same color
Schelling’s Segregation Model in the real world

http://www.businessinsider.com/most-segregated-cities-census-maps-2013-4?op=1#ixzz2Rx64bVpr

COLUMBUS, Ohio — African Americans (blue dots) cluster in the inner city.
Schelling’s Segregation Model in the real world

http://www.businessinsider.com/most-segregated-cities-census-maps-2013-4?op=1#ixzz2Rx64bVpr

HOUSTON, Texas — African Americans, Hispanics (orange dots), and Caucasians (red dots) fan out in separate communities.
Schelling’s Segregation Model in the real world

http://www.businessinsider.com/most-segregated-cities-census-maps-2013-4?op=1#ixzz2Rx64bVpr

WASHINGTON, D.C. — White people have gentrified much of downtown D.C., pushing black people to outer Southeast, Northeast, Anacostia, and the Maryland suburbs.
Schelling’s Segregation Model in the real world

http://www.businessinsider.com/most-segregated-cities-census-maps-2013-4?op=1#ixzz2Rx64bVpr

Baltimore, Md. — Black people live mostly in the inner city and in the western suburbs.
Schelling’s Segregation Model in the real world

http://www.businessinsider.com/most-segregated-cities-census-maps-2013-4?op=1#ixzz2Rx64bV

LOS ANGELES, Calif. — White people cling to the coast around Santa Monica and Brentwood, and the north side of the city beginning with the Hollywood Hills.
NEW YORK, N.Y. — Most of Manhattan is white south of 125th Street, with the exception of Chinatown. South Brooklyn is mostly white, with pockets of Asians and Hispanics, and Northeast Brooklyn going into Queens is heavily black. Queens and the Bronx are highly diverse.
Schelling’s Segregation Model in the real world

New York is far more economically segregated than the average Northeast metro area. Its overall segregation score jumped nine points since 1980. [Red is low income. Blue is high income.]
Schelling’s Segregation Model in the real world

Since 1980, L.A.'s segregation score increased by only four points, but it's still 19 points higher than the average for Western cities. [Red is low income. Blue is high income.]
Flocking Vee Formation
Birds and Fish

- Craig Reynolds proposed in 1987 a model to describe the motion of animals, called *boids*
- Each boid in the flock is an independent agent, obeying a simple set of rules

<table>
<thead>
<tr>
<th>Image</th>
<th>Rule Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Avoid flying too close to others</td>
</tr>
<tr>
<td>(b)</td>
<td>Copy near neighbors</td>
</tr>
<tr>
<td>(c)</td>
<td>Move towards center of perceived neighbors</td>
</tr>
<tr>
<td>(d)</td>
<td>Attempt to maintain clear view</td>
</tr>
</tbody>
</table>
Flocking Vee
Sample Models → Biology → Flocking
Sample Models → Biology → Flocking Vee Formation
Fireflies
Fireflies

• Though most species of firefly do not generally synchronize in groups, there are some that have been observed to do so
Fireflies synchronization model

- Each firefly constantly cycles through its own clock, flashing at the beginning of each cycle and then resetting the clock to zero once it has reached the maximum.
- At the start of each simulation all fireflies begin at a random point in their cycles (though they all have the same cycle lengths) and so flashing will occur erratically through the population.
- As fireflies perceive other flashes around them they are able to use this information to reset their own clocks to try and synchronize with the other fireflies in their vicinity.
Fireflies
Sample Models → Biology → Fireflies
Interesting read