
Shared-memory Shared-memory
Programming with OpenMPProgramming with OpenMP

Moreno Marzolla
Dip. di Informatica—Scienza e Ingegneria (DISI)
Università di Bologna

moreno.marzolla@unibo.it

Pacheco chapter 5

OpenMP Programming 2

Copyright © 2013, 2014, 2017–2022
Moreno Marzolla, Università di Bologna, Italy
https://www.moreno.marzolla.name/teaching/HPC/

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA 4.0). To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons,
543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

OpenMP Programming 3

Credits

● Peter Pacheco, Dept. of Computer Science, University
of San Francisco
http://www.cs.usfca.edu/~peter/

● Mary Hall, School of Computing, University of Utah
https://www.cs.utah.edu/~mhall/

● Salvatore Orlando, DAIS, Università Ca' Foscari di
Venezia, http://www.dais.unive.it/~calpar/

● Tim Mattson, Intel
● Blaise Barney, OpenMP

https://computing.llnl.gov/tutorials/openMP/ (highly
recommended!!)

http://www.cs.usfca.edu/~peter/
https://www.cs.utah.edu/~mhall/
http://www.dais.unive.it/~calpar/
https://computing.llnl.gov/tutorials/openMP/

OpenMP Programming 4

OpenMP

● Model for shared-memory parallel programming
● Portable across shared-memory architectures
● Incremental parallelization

– Parallelize individual computations in a program while
leaving the rest of the program sequential

● Compiler based
– Compiler generates thread programs and synchronization

● Extensions to existing programming languages
(Fortran, C and C++)
– mainly by directives (#pragma omp ...)
– a few library routines

OpenMP Programming 6

Most OpenMP programs use these constructs only

Credits: Tim Mattson

OpenMP pragma, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved
execution across threads

int omp_get_thread_num()
int omp_get_num_threads()

Create threads with a parallel region and split up the work using
the number of threads and thread ID

double omp_get_wtime() Timing blocks of code

setenv OMP_NUM_THREADS N
export OMP_NUM_THREADS=N Set the default number of threads with an environment variable

#pragma omp barrier
#pragma omp critical
#pragma omp atomic

Synchronization, critical sections

#pragma omp for
#pragma omp parallel for Worksharing, parallel loops

reduction(op:list) Reductions of values across a team of threads

schedule(dynamic [,chunk])
schedule(static [,chunk]) Loop schedules

private(list), shared(list),
firstprivate(list) Data environment

#pragma omp master
#pragma omp single Worksharing with a single thread

#pragma omp task
#pragma omp taskwait Tasks including the data environment for tasks.

OpenMP Programming 7

A Programmer’s View of OpenMP

● OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax
– Requires compiler support (C/C++ or Fortran)

● OpenMP will:
– Allow a programmer to separate a program into serial regions and

parallel regions
– Provide synchronization constructs

● OpenMP will not:
– Parallelize automatically
– Guarantee speedup
– Avoid data races

OpenMP Programming 8

OpenMP Execution Model

● Fork-join model of parallel
execution

● Begin execution as a single
process (master thread)

● Start of a parallel construct:
– Master thread creates team of

threads (worker threads)
● Completion of a parallel

construct:
– Threads in the team

synchronize – implicit barrier
● Only the master thread

continues execution

Master

Parallel
regions

Implicit barrier
at the end of
parallel regions

OpenMP Programming 9

OpenMP uses Pragmas

● Pragmas are special preprocessor directives
– They allow behaviors that are not part of the C specification

● Compilers that don’t support the pragmas ignore them
● Most OpenMP constructs apply to the structured block

following the directive
– Structured block: a block of one or more statements with one

point of entry at the top and one point of exit at the bottom
– Returning from inside a parallel block is not allowed

#pragma omp construct [clause [clause ...]]

OpenMP Programming 10

The #pragma omp parallel directive

● When a thread reaches a
parallel directive, it creates a
pool of threads and becomes the
master of the team
– The master has thread ID 0

● The default pool size is
implementation-dependent

● The code of the parallel region is
duplicated and all threads will
execute it

● There is an implied barrier at the
end of a parallel section. Only the
master continues execution past
this point

#pragma omp parallel [clause ...]
clause ::=

if (scalar_expression) |
private (list) |
shared (list) |
default (shared | none) |
firstprivate (list) |
reduction (operator: list) |
copyin (list) |
num_threads(thr)

OpenMP Programming 11

“Hello, world” in OpenMP
/* omp-demo0.c */
#include <stdio.h>

int main(void)
{

 #pragma omp parallel
 {

printf("Hello, world!\n");
 }

 return 0;
} $ gcc -fopenmp omp-demo0.c -o omp-demo0

$./omp-demo0
Hello, world!
Hello, world!
$ OMP_NUM_THREADS=4 ./omp-demo0
Hello, world!
Hello, world!
Hello, world!
Hello, world!

Block Block Block Block

0 1 2 3

Thread

Barrier

OpenMP Programming 12

“Hello, world” in OpenMP

/* omp-demo1.c */
#include <stdio.h>
#include <omp.h>

void say_hello(void)
{
 int my_rank = omp_get_thread_num();
 int thread_count = omp_get_num_threads();
 printf("Hello from thread %d of %d\n",

 my_rank, thread_count);
}

int main(void)
{
 #pragma omp parallel
 say_hello();

 return 0;
}

$ gcc -fopenmp omp-demo1.c -o omp-demo1
$./omp-demo1
Hello from thread 0 of 2
Hello from thread 1 of 2
$ OMP_NUM_THREADS=4 ./omp-demo1
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

OpenMP Programming 13

/* omp-demo2.c */
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void say_hello(void)
{
 int my_rank = omp_get_thread_num();
 int thread_count = omp_get_num_threads();
 printf("Hello from thread %d of %d\n",

 my_rank, thread_count);
}

int main(int argc, char* argv[])
{

int thr = atoi(argv[1]);
 #pragma omp parallel num_threads(thr)
 say_hello();

 return 0;
}

$ gcc -fopenmp omp-demo2.c -o omp-demo2
$./omp-demo2 2
Hello from thread 0 of 2
Hello from thread 1 of 2
$./omp-demo2 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

OpenMP Programming 14

/* omp-demo3.c */
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void say_hello(void)
{
 int my_rank = omp_get_thread_num();
 int thread_count = omp_get_num_threads();
 printf("Hello from thread %d of %d\n",

 my_rank, thread_count);
}

int main(int argc, char* argv[])
{

omp_set_num_threads(4);
 #pragma omp parallel
 say_hello();

 return 0;
}

$ gcc -fopenmp omp-demo3.c -o omp-demo3
$ OMP_NUM_THREADS=8 ./omp-demo3
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Setting the number of threads programmatically

OpenMP Programming 15

Warning

● omp_get_num_threads() returns the number of
threads in the currently active pool
– If no thread pool is active, the function returns 1

● omp_get_max_threads() returns the maximum
number of threads that can be created

int main(int argc, char* argv[])
{
 printf("Before par region: threads=%d, max=%d\n",
 omp_get_num_threads(), omp_get_max_threads());
#pragma omp parallel
 {
 printf("Inside par region: threads=%d, max=%d\n",
 omp_get_num_threads(), omp_get_max_threads());
 }
 return 0;
} See omp-demo4.c

OpenMP Programming 16

Nested parallelism

● It is possible to nest parallel
regions
– Nesting must be enabled by setting

the environment variable
OMP_NESTED=true

– omp_get_num_threads() returns
the number of the innermost thread
pool a thread is part of

– omp_get_thread_num() returns
the ID of a thread in the innermost
pool it is part of

● Nested parallelism could cause
oversubscription
– more running threads than

processor cores
● See omp-nested.c

#pragma omp parallel

#pragma omp
parallel

#pragma omp
parallel

#pragma omp
parallel

#pragma omp
parallel

OpenMP Programming 17

More complex example

int num_thr = 3
#pragma omp parallel if(num_thr>=4) num_threads(num_thr)
{

/* parallel block */
}

● The “if” clause is evaluated
– If the clause evaluates to true, the parallel construct is

enabled with num_thr threads
– If the clause evaluates to false, the parallel construct is

ignored

OpenMP Programming 18

Taking times

double tstart, tstop;
tstart = omp_get_wtime();

#pragma omp ...
 {

/* block of code to measure */
 }

tstop = omp_get_wtime();
printf("Elapsed time: %f\n", tstop - tstart);

Remember: implicit barrier here

OpenMP Programming 20

Scoping of variables

OpenMP Programming 21

Scope

● In serial programming, the scope of a variable
consists of the parts of a program where the variable
can be used

● In OpenMP, the scope of a variable refers to the set
of threads that can access the variable

● By default:
– All variables that are visible at the beginning of a parallel

block are shared across threads
– All variables defined inside a parallel block are private to

each thread

OpenMP Programming 22

Variables scope in OpenMP
● shared(x)

– all threads access the same memory location
● private(x)

– each thread has its own private copy of x
– all local instances of x are not initialized
– local updates to x are lost when exiting the parallel region
– the original value of x is retained at the end of the block (OpenMP ≥ 3.0 only)

● firstprivate(x)
– each thread has its own private copy of x
– all copies of x are initialized with the current value of x
– local updates to x are lost when exiting the parallel region
– the original value of x is retained at the end of the block (OpenMP ≥ 3.0 only)

● default(shared) or default(none)
– affects all the variables not specified in other clauses
– default(none)ensures that you must specify the scope of each variable

used in the parallel block that the compiler can not figure out by itself (highly
recommended!!)

Default

OpenMP Programming 23

What is the output of this program?
/* omp-scope.c */
#include <stdio.h>

int main(void)
{

int a=1, b=1, c=1, d=1;
#pragma omp parallel num_threads(10) \

private(a) shared(b) firstprivate(c)
{

printf("Hello World!\n");
a++;
b++;
c++;
d++;

}
printf("a=%d\n", a);
printf("b=%d\n", b);
printf("c=%d\n", c);
printf("d=%d\n", d);
return 0;

}
Hint: compile with -Wall

OpenMP Programming 24

Sharing arrays

int a[3];
int *b = (int*)malloc(5 * sizeof(*b));

#pragma omp parallel num_threads(3) private(a, b)
{

}

a[] *b 0x0fba0x0fba

OpenMP Programming 25

Sharing arrays

int a[3];
int *b = (int*)malloc(5 * sizeof(*b));

#pragma omp parallel num_threads(3) private(a, b)
{

}

a[] *b

Thread 0

a
0
[]

*b
0

Thread 1

a
1
[]

*b
1

Thread 2

a
2
[]

*b
2

0x0fba0x0fba

0x0fba 0x0fba 0x0fba

OpenMP Programming 26

GCC annoys us

● When using default(none)
– In GCC < 9.x, const variables are predetermined shared
– In GCC ≥ 9.x, you must explicitly specify the visibility of

every variable
● See: https://www.gnu.org/software/gcc/gcc-9/porting_to.html

https://www.gnu.org/software/gcc/gcc-9/porting_to.html

OpenMP Programming 27

GCC annoys us

const int foo = 1;
#pragma omp parallel default(none)
{

int baz = 0;
baz += foo;

}

● GCC < 9.x: OK
● GCC ≥ 9.x:

error: ‘foo’ not specified in enclosing ‘parallel’

See omp-bug1.c

OpenMP Programming 28

GCC annoys us

● GCC < 9.x:
‘foo’ is predetermined ‘shared’ for ‘shared’

● GCC ≥ 9.x: OK

const int foo = 1;
#pragma omp parallel default(none) shared(foo)
{

int baz = 0;
baz += foo;

}

See omp-bug2.c

OpenMP Programming 29

GCC annoys us

● GCC < 9.x: OK
● GCC ≥ 9.x: OK

const int foo = 1;
#if __GNUC__ < 9
#pragma omp parallel default(none)
#else
#pragma omp parallel default(none) shared(foo)
#endif
{

int baz = 0;
baz += foo;

}

OpenMP Programming 30

Example: the trapezoid rule

OpenMP Programming 31

The trapezoid rule

/* Serial trapezoid rule */
h = (b-a)/n;
result = 0;
x = a;
for (i=0; i<n; i++) {

result += h*(f(x) + f(x+h))/2;
x += h;

}
return result;

See trap.c

h
x x+ha b

x

y

OpenMP Programming 32

A first OpenMP version

● Two types of tasks
– computation of the areas of individual trapezoids
– adding the areas of trapezoids

● Areas can be computed independently
– embarrassingly parallel problem

● We assume that there are more trapezoids than
OpenMP threads (n >> P)

/* Serial trapezoid rule */
h = (b-a)/n;
result = 0;
x = a;
for (i=0; i<n; i++) {

result += h*(f(a) + f(a+h))/2;
x += h;

}
return result;

OpenMP Programming 33

Assigning trapezoids to threads

a b
x

y

P0 P1 P2 P3

OpenMP Programming 34

A first OpenMP version

● Split the n intervals across OpenMP threads
● Thread t stores its result in partial_result[t]
● The master sums all partial results
● See omp-trap0.c

– Try adding "default(none)" to the omp parallel clause

OpenMP Programming 35

A second OpenMP version

● Split the n intervals across OpenMP threads
● Thread t...

– ...stores its result in a local variable partial_result
– ...updates the global result

● omp atomic
– Protects updates to a shared variable
– Updates must be of the form "read-update-write", e.g., var += x

● omp critical
– Protects access to a critical section, which may consist of arbitrary

instructions
– All threads will eventually execute the critical section; however, only one

thread at a time can be inside the critical block
● critical protects code; atomic protects memory locations
● See omp-trap1.c

OpenMP Programming 36

The atomic directive

● The omp atomic directive ensures that only one thread at
the time updates a shared variable

● The code above forces all threads to serialize during the
update of the shared variable
– This is not a real problem, since each thread will update the

shared variable exactly once
● We can also use the reduction clause

#pragma omp parallel
{

double partial_result = trap(a, b, n);
#pragma omp atomic

result += partial_result;
}

OpenMP Programming 37

The reduction clause

#pragma omp parallel reduction(+:result)
{

double partial_result = trap(a, b, n);
result += partial_result;

}

● reduction(<op> : <variable>)

can be one of +, -, *, |, ^, &, |, &&, || (subtraction is
handled in a slightly different way to ensure that the
result is what is expected)

See omp-trap2.c

OpenMP Programming 38

Reduction operators
● A reduction operator is a binary associative operator

such as addition or multiplication
– An operator ◊ is associative if (a ◊ b) ◊ c = a ◊ (b ◊ c)

● A reduction is a computation that repeatedly applies
the same reduction operator to a sequence of
operands to get a single result
– ◊-reduce(x

0
, x

1
, … x

n-1
) = x

0
 ◊ x

1
 ◊ … ◊ x

n-1

OpenMP Programming 39

How the reduction clause works
● One private copy of the reduction variable is created for each thread
● Each private copy is initialized with the neutral element of the reduction

operator (e.g., 1 for *, 0 for +)
● Each thread executes the parallel region
● When all threads finish, the reduction operator is applied to the last value of

each local reduction variable, and the value the reduction variable had
before the parallel region

/* omp-reduction.c */
#include <stdio.h>
int main(void)
{

int a = 2;
#pragma omp parallel reduction(*:a)

{
a += 2;

}
printf("%d\n", a);
return 0;

}

$ OMP_NUM_THREADS=1 ./omp-reduction
6
$ OMP_NUM_THREADS=2 ./omp-reduction
18
$ OMP_NUM_THREADS=4 ./omp-reduction
162

OpenMP Programming 40

How the reduction clause works

/* omp-reduction.c */
#include <stdio.h>
int main(void)
{

int a = 2;
#pragma omp parallel reduction(*:a)

{
/* implicit initialization a = 1 */

a += 2;
}
printf("%d\n",a);
return 0;

}

a = 2

a = 1

a += 2

a = 2 * 3 * 3

Implicit
initialization

OMP_NUM_THREADS=2

a = 1

a += 2

OpenMP Programming 41

Some valid reduction operators
Operator Initial value

+ 0

* 1

- 0

min largest positive number

max most negative number

& ~0

| 0

^ 0

&& 0

|| 1

OpenMP 3.1
and later

OpenMP Programming 42

The omp for directive

● The omp for directive is used inside a parallel block
● Loop iterations are assigned to the threads of the

current team (the ones created with omp parallel)
– The loop variable is made private by default

#pragma omp parallel
{
#pragma omp for
 for (i=0; i<n; i++) {
 do_work(i);
 }
}

do_work(0)

do_work(1)

do_work(2)

do_work(3)

do_work(4)

do_work(5)

do_work(6)

do_work(7)

do_work(8)

do_work(9)

do_work(10)

do_work(11)

Thread 0 Thread 1 Thread 2

Implied barriers here

OpenMP Programming 43

The parallel for directive

● The parallel and for directives can be collapsed in a
single parallel for

double trap(double a, double b, int n)
{
 double result = 0;
 const double h = (b-a)/n;
 int i;
#pragma omp parallel for reduction(+:result)
 for (i = 0; i<n-1; i++) {

result += h*(f(a+i*h) + f(a+(i+1)*h))/2;
 }
 return result;
}

See omp-trap3.c

OpenMP Programming 44

Legal forms for parallelizable for statements

● Variable index must have integer or pointer type (e.g., it can’t be a float)
● The expressions start, end, and incr must have a compatible type. For

example, if index is a pointer, incr must have integer type
● The expressions start, end, and incr must not change during execution

of the loop
● Variable index can only be modified by the “increment expression” in

the “for” statement

for index = start

index < end
index <= end
index > end
index >= end

index++
++index
index--
--index
index += incr
index -= incr
index = index + incr
index = incr + index
index = index - incr

; ;

OpenMP Programming 45

Data dependencies

● It is not possible to use a parallel for directive if
data dependencies are present

● Example: computation of PI

π=4 {1−1
3
+

1
5
−

1
7
+…}=4∑

k=0

+∞ (−1)
k

2k+1

double factor = 1.0;
double sum = 0.0;
for (k=0; k<n; k++) {

sum += factor/(2*k + 1);
factor = -factor;

}
pi_approx = 4.0 * sum;

Loop Carried
Dependency

OpenMP Programming 46

Removing the data dependency

double factor;
double sum = 0.0;
#pragma omp parallel for private(factor) reduction(+:sum)
for (k=0; k<n; k++) {

if (k % 2 == 0) {
factor = 1.0;

} else {
factor = -1.0;

}
sum += factor/(2*k + 1);

}
pi_approx = 4.0 * sum;

factor must have
private scope

OpenMP Programming 47

Can my loop be parallelized?

● Loop dependence analysis
● A quick-and-dirty test: run the loop backwards

– If the program is still correct, the loop might be parallelizable
– Not 100% reliable, but works most of the time

for (i=0; i<n; i++) {
/* loop body */

}

for (i=n-1; i>=0; i--) {
/* loop body */

}

OpenMP Programming 49

schedule(type, chunksize)
● type can be:

– static: the iterations can be assigned to the threads
before the loop is executed. If chunksize is not specified,
iterations are evenly divided contiguously among threads

– dynamic or guided: iterations are assigned to threads
while the loop is executing. Default chunksize is 1

– auto: the compiler and/or the run-time system determines
the schedule

– runtime: the schedule is determined at run-time using the
OMP_SCHEDULE environment variable (e.g., export
OMP_SCHEDULE="static,1")

● Default schedule type is implementation dependent
– GCC seems to use static by default

OpenMP Programming 50

Example

● Twelve iterations 0, 1, … 11 and three threads
● schedule(static, 1)

● schedule(static, 2)

● schedule(static, 4)

0 1 2 3 4 5 6 7 8 9 10 11

0 3 41 2 5 6 9 107 8 11

Thread 0

Thread 1

Thread 2

0 5 101 4 112 7 83 6 9

Default chunksize in this case

OpenMP Programming 51

● The iterations are broken up into chunks of
chunksize consecutive iterations
– However, in a guided schedule, as chunks are completed

the size of the new chunks decreases
● Each thread executes a chunk, and when a thread

finishes a chunk, it requests another one from the run-
time system
– Master/Worker paradigm

The Dynamic/Guided Schedule Types

OpenMP Programming 52

Choosing a schedule clause

Schedule
clause

When to use Note

static
Pre-determined and
predictable work per
iteration

Least work at
runtime: scheduling
done at compile-time

dynamic
Unpredictable,
highly variable work
per iteration

Most work at runtime:
complex scheduling
logic used at run-time

Credits: Tim Mattson

OpenMP Programming 53

Choosing the partition size

Partition size

W
a

ll-
cl

oc
k

tim
e

Too small = higher scheduling overhead Too large = unbalanced workload

The optimal partition size is in general system- and application-
dependent; it might be estimated by measurement

“Optimal” partition size

OpenMP Programming 54

The collapse directive

● Specifies how many loops in a nested loop should be
collapsed into one large iteration space and divided
according to the schedule clause

#pragma omp parallel for collapse(2)
 for (y = 0; y < ysize; y++) {
 for (x = 0; x < xsize; x++) {
 drawpixel(x, y);
 }
 }

collapse(2) makes
x and y private by

default

OpenMP Programming 55

How collapse works
j

i

Thread 0

Thread 1

Thread 2

Thread 3

Thread 43,0 3,1 3,2 3,3 3,4

2,0 2,1 2,2 2,3 2,4

1,0 1,1 1,2 1,3 1,4

0,0 0,1 0,2 0,3 0,4

#pragma omp parallel for num_threads(5) collapse(2)
for (i=0; i<4; i++) {

for (j=0; j<5; j++) {
do_work(i,j);

}
}

OpenMP Programming 56

How collapse works
j

i

3,0 3,1 3,2 3,3 3,4

2,0 2,1 2,2 2,3 2,4

1,0 1,1 1,2 1,3 1,4

0,0 0,1 0,2 0,3 0,4

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0,0 0,1 0,2 0,3 0,4 1,0 1,1 1,2 1,3 1,4 2,0 2,1 2,2 2,3 2,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

#pragma omp parallel for num_threads(5) collapse(2)
for (i=0; i<4; i++) {

for (j=0; j<5; j++) {
do_work(i,j);

}
}

OpenMP Programming 57

How collapse works
j

i

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

3,0 3,1 3,2 3,3 3,42,0 2,1 2,2 2,3 2,41,0 1,1 1,2 1,3 1,40,0 0,1 0,2 0,3 0,4

2,0 2,1 2,2 2,3 2,4

1,0 1,1 1,2 1,3 1,4

0,0 0,1 0,2 0,3 0,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

#pragma omp parallel for num_threads(5) collapse(2)
for (i=0; i<4; i++) {

for (j=0; j<5; j++) {
do_work(i,j);

}
}

OpenMP Programming 58

How collapse works
j

i

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

j

i

2,0 2,1 2,2 2,3 2,4

1,0 1,1 1,2 1,3 1,4

0,0 0,1 0,2 0,3 0,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

3,0 3,1 3,2 3,3 3,42,0 2,1 2,2 2,3 2,41,0 1,1 1,2 1,3 1,40,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

#pragma omp parallel for num_threads(5) collapse(2)
for (i=0; i<4; i++) {

for (j=0; j<5; j++) {
do_work(i,j);

}
}

OpenMP Programming 59

Spot the bug

int i, j, n, m, temp;
...
#pragma omp parallel for private(temp)
for (i=0; i<n; i++){

for (j=0; j<m; j++){
temp = b[i]*c[j];
a[i][j] = temp * temp + d[i];

}
}

OpenMP Programming 61

Example: Odd-Even Transposition Sort

OpenMP Programming 62

Serial Odd-Even Transposition Sort

● Variant of bubble sort
● Compare all (even, odd) pairs of adjacent elements,

and exchange them if in the wrong order
● Then compare all (odd, even) pairs, exchanging if

necessary; repeat the step above

v[0]

v[1]

v[2]

v[3]

v[4]

v[5]

v[6]

Compare and
exchange

Time

OpenMP Programming 63

Serial Odd-Even Transposition Sort

● Variant of bubble sort
● Compare all (even, odd) pairs of adjacent elements,

and exchange them if in the wrong order
● Then compare all (odd, even) pairs, exchanging if

necessary; repeat the step above

for (phase = 0; phase < n; phase++) {
if (phase % 2 == 0) {

for (i=0; i<n-1; i+=2) {
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
} else {

for (i=1; i<n-1; i+=2) {
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
}

}

OpenMP Programming 64

First OpenMP Odd-Even Sort

for (phase = 0; phase < n; phase++) {
if (phase % 2 == 0) {

#pragma omp parallel for default(none) shared(v,n)
for (i=0; i<n-1; i+=2) {

if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);
}

} else {
#pragma omp parallel for default(none) shared(v,n)

for (i=1; i<n-1; i+=2) {
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
}

}

OpenMP Programming 66

First OpenMP Odd-Even Sort

for (phase = 0; phase < n; phase++) {
if (phase % 2 == 0) {

#pragma omp parallel for default(none) shared(v,n)
for (i=0; i<n-1; i+=2) {

if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);
}

} else {
#pragma omp parallel for default(none) shared(v,n)

for (i=1; i<n-1; i+=2) {
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
}

}

OpenMP Programming 67

First OpenMP Odd-Even Sort

for (phase = 0; phase < n; phase++) {
if (phase % 2 == 0) {

#pragma omp parallel for default(none) shared(v,n)
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
} else {

#pragma omp parallel for default(none) shared(v,n)
for (i=1; i<n-1; i+=2) {

if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);
}

}
}

phase = 0

phase = 1

phase = 2

phase = 3

phase = 4

phase = 5

OpenMP Programming 68

First OpenMP Odd-Even Sort

● The pool of threads is being created/destroyed at each
omp parallel for region

● This may produce some overhead, depending on the
OpenMP implementation

● You can nest omp for inside omp parallel to
recycle the threads from the same pool

OpenMP Programming 69

Second OpenMP Odd-Even Sort

#pragma omp parallel default(none) shared(v,n) private(phase)
for (phase = 0; phase < n; phase++) {

if (phase % 2 == 0) {
#pragma omp for

for (i=0; i<n-1; i+=2) {
if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);

}
} else {

#pragma omp for
for (i=1; i<n-1; i+=2) {

if (v[i] > v[i+1]) swap(&v[i], &v[i+1]);
}

}
}

See omp-odd-even.c

Create thread pool

#pragma omp for uses the threads from the
pool created with #pragma omp parallel

OpenMP Programming 70

How it works

#pragma omp parallel num_threads(4) \
 default(none) private(i)
for (i = 0; i < 20; i++) {
#pragma omp for

for (j=0; j < 100; j++) {
do_work(i, j);

}
}

i=0 i=0i=0 i=0

j=0..24 j=25..49 j=50..74 j=75..99

i=1 i=1i=1 i=1

j=0..24 j=25..49 j=50..74 j=75..99

i=2 i=2i=2 i=2

j=0..24 j=25..49 j=50..74 j=75..99

OpenMP Programming 71

OpenMP synchronization

● #pragma omp barrier
– All threads in the currently active team must reach this point

before they are allowed to proceed
● #pragma omp master

– Marks a parallel region which is executed by the master only
(the thread with rank = 0); other threads just skip the region

– There is no implicit barrier at the end of the block
● #pragma omp single

– Marks a parallel region which is executed once by the first
thread reaching it, whichever it is

– A barrier is implied at the end of the block

OpenMP Programming 72

Example

#pragma omp parallel
{

compute();

#pragma omp master
swap();

#pragma omp barrier
more_compute();

}

0 1 2 3

Thread

compute()

compute()
compute()

compute()

swap()

more_
compute()

more_
compute()

more_
compute()

more_
compute()

barrier

barrier

OpenMP Programming 74

Work-sharing constructs

OpenMP Programming 78

OpenMP tasking constructs

● Not all programs have simple loops that OpenMP can
parallelize

● Example: linked list traversal
– Each node of the linked list is "processed" independently

from other nodes

● OpenMP parallel for works only for loops where
the iteration count can be known in advance at runtime

Credits: Tim Mattson

p = head;
while (p) {

processwork(p);
p = p->next;

}

OpenMP Programming 79

What are OpenMP tasks?

● Tasks are independent units of work
● Tasks are composed of:

– code to execute
– data to compute with

● Threads are assigned to perform the work of each task
– The thread that encounters the task construct may execute

the task immediately
– The threads may defer execution until later

● Tasks can be nested: a task may generate other tasks

Credits: Tim Mattson

OpenMP Programming 80

#pragma omp task

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
fred();
#pragma omp task
barney();
#pragma omp task
wilma();

}
}

Credits: Tim Mattson

Tasks executed by some
threads in some order

Create a pool of threads

Only one thread creates
the tasks (may also use
#pragma omp master)

All tasks complete
before this barrier is

released

OpenMP Programming 82

Data scoping with tasks

● You can specify the scope of variables within a
#pragma omp task directive

● Variables can be shared, private or firstprivate
– If a variable is shared on a task construct, the references to

it inside the construct are to the storage with that name at
the point where the task was encountered

– If a variable is private on a task construct, the references to
it inside the construct are to new uninitialized storage that is
created when the task is executed

– If a variable is firstprivate on a construct, the references to it
inside the construct are to new storage that is created and
initialized with the value of the existing storage of that name
when the task is encountered

Credits: Tim Mattson

OpenMP Programming 83

Data scoping with tasks

● The behavior you want for tasks is usually firstprivate,
because the task may not be executed until later (and
variables may have gone out of scope)
– Variables that are private when the task construct is

encountered are firstprivate by default

Credits: Tim Mattson

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task
{

int C;
compute(A, B, C);

}
}

A is shared
B is firstprivate

C is private

OpenMP Programming 84

Linked list traversal with tasks

#pragma omp parallel
{
#pragma omp single

{
p=head;
while (p) {

#pragma omp task firstprivate(p)
processwork(p);
p = p->next;

}
}

}

Credits: Tim Mattson

Creates a task with its
own copy of “p”

initialized to the value
of “p” when the task is

defined

OpenMP Programming 85

When/Where are tasks completed?

● At thread barriers (explicit or implicit)
– e.g., at the end of a #pragma omp parallel block
– applies to all tasks generated in the current parallel region

up to the barrier
● At taskwait directive

– wait until all tasks defined in the current task (not in the
descendants!) have completed.

– #pragma omp taskwait
– The code executed by a thread in a parallel region is

considered a task here

Credits: Tim Mattson

OpenMP Programming 87

Example:
parallel Fibonacci with tasks

● F
n
 = F

n-1
 + F

n-2

– F
0
 = F

1
 = 1

● Inefficient algorithm
O(2n)

#include <stdio.h>
int fib(int n)
{
 int n1, n2;
 if (n < 2) {
 return 1;
 } else {
 n1 = fib(n-1);
 n2 = fib(n-2);
 return n1 + n2;
 }
}

int main(int argc, char* argv[])
{
 int n = 10, res;
 res = fib(n);
 printf("fib(%d)=%d\n", n, res);
 return 0;
}

Credits: Tim Mattson

OpenMP Programming 88

Example:
parallel Fibonacci with tasks

● Binary tree of tasks
● A task cannot complete until all

tasks below it in the tree are
complete
– enforced with taskwait

● n1, n2 are private to the
current task
– because they are local to a

function called in a parallel block
– So they would be firstprivate

● Must be shared on child tasks
because their value must be
stored at their parent

#include <stdio.h>
int fib(int n)
{
 int n1, n2;
 if (n < 2) {
 return 1;
 } else {
#pragma omp task shared(n1)
 n1 = fib(n-1);
#pragma omp task shared(n2)
 n2 = fib(n-2);
#pragma omp taskwait
 return n1 + n2;
 }
}

int main(int argc, char* argv[])
{
 int n = 10, res;
#pragma omp parallel
#pragma omp master
 res = fib(n);
 printf("fib(%d)=%d\n", n, res);
 return 0;
}

Credits: Tim Mattson

OpenMP Programming 89

Concluding Remarks
● OpenMP is a standard for programming shared-

memory systems.
– Uses both special functions and preprocessor directives

called pragmas.
● OpenMP programs start multiple threads

– By default most systems use a block-partitioning of the
iterations in a parallelized for loop

– OpenMP offers a variety of scheduling options.
● In OpenMP the scope of a variable is the collection of

threads to which the variable is accessible.
● A reduction is a computation that repeatedly applies

the same reduction operator to a sequence of
operands in order to get a single result.

