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Abstract

In this paper we describe the design and implementation oflibcppsim , a general-

purpose, process-oriented simulation library written in C++.libcppsim provides a set of

classes for implementing simulation processes, scheduling primitives, random variate gener-

ation and output data analysis functions. The main simulation entity provided by the library

is the simulation process; the basic process scheduling primitives are modeled upon those

provided by SIMULA ’s simulation class. The modular object-oriented design oflibcpp-

sim allows users to extend its functionalities with minimal effort. In order to improve ef-

ficiency, simulation processes are not implemented as operating system threads; instead,

they are implemented on top of coroutine objects which implements a cooperative quasi-

parallel process environment. Coroutines are implemented in a portable way in order to

allow libcppsim to be used on different platforms.

Keywords Process-Oriented Simulation, Simulation Library, C++.

1

mailto:marzolla@dsi.unive.it


1 Introduction

Simulation is a general modeling technique which can be used for analyzing complex sys-

tems that can not be described and evaluated analytically. Many tools and languages have

been developed over time in order to facilitate the implementation of simulation models.

SIMULA [6] has been one of the first successful general-purpose programming languages

providing special features targeted at simulation implementation purposes. SIMULA pro-

vided a set of basic facilities for implementing a simulation model as a set of cooperating

simulation processes executing in a quasi-parallel system. These facilities were enough for

describing many typical simulation models, and could also be used as building blocks for

more sophisticated applications; DEMOS [4] was one of the alternative simulation systems

developed in SIMULA .

Traditional general-purpose programming languages can be used for implementing sim-

ulation programs as well. Support for simulation facilities is usually provided as libraries

which can be linked to user’s applications. Example of simulation libraries based on general-

purpose languages include CSIM19 [16] and C-Sim [10] (based on the C language), C++Sim [13],

OMNET++ [18] and DESP-C++ [7] (based on the C++ language) and JavaSim [12] (written

in Java). More sophisticated and user-friendly simulation tools have also been developed

to make the implementation of simulation models easier for non-programmers. Such simu-

lation environments (usually limited to particular models, such as those based on Queuing

Networks or Petri Nets) provide users with visual editors for graphically building the model.

Simulation languages and libraries can be implemented according to an event-oriented

or process-oriented paradigm. Event-oriented simulation models are described in term of

the events which can change the system’s state. A process-oriented simulation model is

represented as a collection of concurrently executing simulation processes, each one with its

own thread of execution. A simulation process is made of two parts: a set of local variables,

and a sequence of actions to execute.

It should be noted that many existing languages and tools suffer either a long learning

time, poor performances, or can only be used for special-purpose models as they lack gen-

erality. Simulation libraries based on the event-oriented paradigm, while usually easier to

learn, are not suited for models with a high number of different event types, as the result-
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ing simulation programs would be very difficult to understand and debug. On the other

hand, implementing the process-oriented simulation paradigm on the top of a conventional,

general-purpose programming language can be difficult due to limitations (the main being

the lack of support for coroutines) of the host language. Nevertheless, using a standard pro-

gramming language is desirable because modelers are more likely to be already acquainted

with the language and do not require to learn some new idiom.

In this paper we describelibcppsim , a process-oriented, discrete simulation library

written in C++. Our goal is to provide a simulation library based on a widely used and

efficient object-oriented programming language. Object-orientation has long been recog-

nized to be very useful for modeling complex systems in a compact and structured way; it

is not a surprise that SIMULA was one of the first object-oriented programming languages.

libcppsim implements a limited set of simulation primitives which can be learned quickly

and can be immediately used for implementing simulation models. The provided simple and

general framework can be extended if necessary with more complex, high-level functionali-

ties.

Efficiency was one of our main concerns. For that reason the pseudo-parallel simulation

process system is not based on the threading model of the underlying Operating System

(OS). Threads are not handled efficiently in every OS, as thread switching may incur in

the same overhead as process switching. Moreover, complex simulation models made of

tens or thousands of simulation processes would probably overflow the resources (process or

thread table size) of many operating systems. We address this problem by implementing the

coroutineprimitive as a C++ class. Coroutines implements a simple, user-level cooperative

multitasking environment; while this lacks the features of multitasking, it is exactly what is

needed to implement process-oriented simulations.

This paper is organized as follows. Section2 describes how coroutines and simulation

processes are implemented inlibcppsim , and the process scheduling facilities are illus-

trated in Section3. Random variate generation is described in Section4 and output data

analysis in Section5. In Section6 we show a usage example of the library, and conclusions

are reported in Section7.
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2 Simulation Processes

Coroutines [14] are a programming construct which can be very helpful for implementing

process-oriented simulation languages and libraries; SIMULA had coroutines as a built-in

facility. Unfortunately, the C and C++ programming languages, which are widely used and

for which efficient compilers are available, do not provide coroutines natively.

Coroutines are blocks of code with associated state. A coroutine can suspend itself by

calling another coroutine; however, unlike traditional subroutine call in which the caller is

suspended until the callee terminates, coroutines may be reactivated in any order.

In C/C++, each function is associated to a data structure calledactivation recordwhich

is stored in the run-time (LIFO) stack. The activation record contains informations about

the status of the routine, such as the value of the local variables and the return address used

to resume the execution after a function call. When a function call occurs, a new activation

record is created and put on the top of the stack. All the local variables which are defined

by the called routine are stored on the newly created activation record. When a routine

terminates, its activation record is pushed from the stack. LIFO handling of the activation

records does not work anymore with coroutines, because the currently active coroutine may

not be the one associated with the topmost activation record. This implies that the order of

activation of coroutines is not given by the LIFO stack handling. It also means that the stack

of all the routines associated with all but the topmost activation record cannot grow.

This problem can be solved in different ways. The first approach is the “copy-stack

implementation” described by Helsgaun [9]. The stack of the currently operating coroutine

is kept in the C++ runtime stack. When a coroutine suspends, the runtime stack is copied

in a buffer associated with the coroutine. The buffer is allocated in the dynamic heap, so it

does not interfere with the normal stack operation. A coroutine is resumed by copying the

content of that buffer to C++’s runtime stack and setting the program counter to the saved

execution location.

A second approach is simpler and more efficient, and consists of making use of the

context handling facilities provided by most Unix SysV-like environments. The OS provides

functions allowing user-level context switching between different threads of control within a

process using thegetcontext(), setcontext() andmakecontext() functions. In this approach,
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each coroutine has its own run-time stack in a pre-allocated block in the heap.

Both approaches have advantages and disadvantages. The “copy-stack” approach is the

most portable, as it can be implemented almost in every modern OS which implements the

setjmp() andlongjmp() system calls (almost everyone does). However, it requires a copy of

the C++ runtime stack to be saved and restored every time a coroutine passes control, which

may cause a considerable overhead. On the other hand, the approach based on the context

handling facilities is more efficient, as the stack content is not copied, but less portable as not

every OS implements the required system calls. Also, the context-based approach does not

allow the coroutine context to grow past the dimension defined when the context is allocated.

The user is required to set the maximum dimension of the context in advance; choosing a too

small buffer results in erroneous runtime behaviors caused by stack corruption which can be

difficult to debug; see [9] for a complete discussion, and [8] for detailed portability consider-

ations. Thelibcppsim library implements both stack-handling mechanisms, and the user

can choose which one to use at compile time. As a general rule, the “copy-stack” variant

is useful when developing the simulation program, in order to ensure that stack corruption

errors do not happen and measure the maximum stack size required by the application; then,

when the program is verified, production runs may be done with the more efficient context-

based approach.

Once coroutines are available, it is very easy to define simulation processes on top of

them. Fig.1 shows the class hierarchy related to simulation process implementation.

A simulation process is represented by theprocess class, and is derived from thecoroutine

class; a simulation process is a coroutine whose state must be preserved across invocations.

Each simulation process has a unique identifier and a user-supplied name. Theprocess

class defines methods providing the classic SIMULA -like scheduling primitives. It is pos-

sible to suspend the current process for a given amount of time, schedule the activation of

another process in the future or cancel a pending process from the sequencing set. The ac-

tions performed by a simulation process are specified by defining the pure virtual method

inner body(). Fig. 2 shows the C++ interface of theprocess class.

The handle〈T〉 class implements a “smart pointer” to an object of typeT , where the

classT must inherit from classshared. A smart pointer [17] is a pointer to an object which
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coroutine
+call()
+resume()
+terminated(): bool
#detach()
#main()
-enter()

process
-_id: int
-_name: string
+activate()
+activateAfter(p:handle_p)
+activateBefore(p:handle_p)
+activateAt(t:double)
+activateDelay(t:double)
+reactivate()
+reactivateAfter(p:handle_p)
+reactivateBefore(p:handle_p)
+reactivateAt(t:double)
+reactivateDelay(t:double)
+cancel()
+idle(): bool
+terminated(): bool
+evTime(): double
#passivate()
#hold(t:double)
#end_simulation()
#inner_body()

absEvNotice
#_time: double

sqs
+insertAt(p:handle_p,t:double): absEvNotice*
+insert(p:handle_p,q:handle_p): absEvNotice*
+remove(ev:absEvNotice*)
+clear()
+first(): absEvNotice*
+empty(): bool
+size(): int

_ev

_proc

_sqs

shared
-_sharedCount: int
#getRef(): int
#unGetRef(): int

handle
+operator ->(): T*
+operator (): T*
+rep(): T*
+isNull(): bool
+setNull()

T

_obj

Figure 1:libcppsim process class diagram

keeps count of the number of times it is referenced. When the last reference goes away, the

object is automatically destroyed. Smart pointers are used for implementing an automatic

garbage collection mechanism. Our implementation of thehandle class differs from the one

proposed in [17] as we store the reference count in the object rather than in the handle. This

allows to preserve the counter even if the handle is converted to a C-style pointer and then

back to an handle.

3 Sequencing Set implementations

The Sequencing Set (SQS) is a data structure containing the list of simulation processes

to be executed; the list is sorted by nondecreasing activation time order. Each simulation

process contained in the Sequencing Set (SQS) is associated with an event notice. The event

notice basically contains the simulated timestamp at which the process is to be resumed, and

references to that process. Additional informations may be present in order to make insertion

or removal of event notices more efficient (see Fig.3).
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typedef handle<process> handle_p;

class process : public coroutine, public shared {
public:

    process( const string& name );
    virtual ˜process( );

    //
    // Modifiers
    //
    void activate( void );                      // put in front of the sqs
    void activateAfter( handle_p& q );          // activate AFTER q
    void activateBefore( handle_p& q );         // activate BEFORE q
    void activateAt( double t );                // activate at time t
    void activateDelay( double dt = 0.0 );      // activate with delay dt

    void reactivate( void );
    void reactivateAfter( handle_p& q );
    void reactivateBefore( handle_p& q );
    void reactivateAt( double t );
    void reactivateDelay( double dt = 0.0 );

    void cancel( void );                        // remove from the sqs
    
    //
    // Accessors (const)
    //
    bool        idle( void )       const;       // Is this process idle?
    bool        terminated( void ) const;       // Is this process terminated?
    double      evTime( void )     const;       // The next reactivation time

protected:

    //
    // Modifiers
    //
    void hold( double dt );
    void passivate( void );
    void stop_simulation( void );

    //
    // Accessors
    //
    handle_p& current( void ) const;    // Currently executing process
    double time( void ) const;          // Current simulation time

    virtual void inner_body( void ) = 0; // Simulation process’ body
};

Figure 2: Interface of theprocess class.

sqsabsEvNotice

dllEvNoticeprioEvNotice sqsDllsqsPrio
1_sqs

0..*
1_sqs

0..*

Figure 3:libcppsim SQS class diagram

libcppsim provides two different implementations of the SQS data structure. The

first is defined in classsqsDll, and is based on a doubly linked list of event notices. This data

structure is very simple, but insertions of event notices require linear time on average to be

performed. A more efficient implementation is given by classsqsPrio, based on balanced

search trees. The expected insertion time in this case is proportional to the logarithm of the

SQS size. More efficient data structures (e.g. calendar queues [5]) can be implemented by
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rngBernoulli
#_p: double

T:bool
rngNormal

#_mu: double
#_sigmasq: double

T:double
rngDiscEmprical

#_p: vector<double>

T:int

rng
T

rngGam
#_a: double
#_b: double

T:double

rngErl
#_m: double
#_k: int

T:double

rngWeib
#_a: double
#_b: double

T:double

rngExp
#_mean: double

T:double

rngUniform
#_a: double
#_b: double

T:double

rngDiscUniform
#_a: int
#_b: int

T:int

rngConst
#_mean: double

T:double

rngLTNormal
#_mu: double
#_sigmasq: double
#_l: double

T:double
rngRTNormal

#_mu: double
#_sigmasq: double
#_r: double

T:double
rngLRTNormal

#_mu: double
#_sigmasq: double
#_l: double
#_r: double

T:double

Figure 4:libcppsim Random Number Generators class diagram

supplying the corresponding implementation class.

4 Random variate generations

Simulation programs require an efficient and statistically robust mechanism for producing

streams of pseudo-random numbers with given distribution.libcppsim defines an abstract

templated classrng〈T〉 representing a pseudo-random number generator of numbers of type

T . Thus, it is possible to generate streams of random integers, real or boolean values, by

settingT to the appropriate datatype in a subclass. Therng〈T〉 class hierarchy is depicted in

Fig. 4.

It turns out that the basic ingredient for generating stream of pseudo-random numbers

is a good uniform generator RN(0, 1) over the interval[0..1]. We chose to implement the

algorithm calledMRG32k3ain [11], which is known to have long period and good statis-

tical properties. Different random variate generators, have been implemented, based on the

algorithms described in [2, Ch. 5]. These include generators for the Uniform, Exponential,

Gamma, Weibull, (Truncated) Normal, Bernoulli and Empirical distributions.

8



var
#_name: string
#_numUpdates: int
#_numResets: int
+update(v:T_in)
+reset()
+value(): T_out
+report()

T_in
T_out

confInt
+_lBound: double
+_uBound: double
+_confl: double

statistic
#_confl
+setConfl(c:double): double
+getConfl(): double

T_in:double
T_out:confInt

mean repmean welch

histogramaccum bmeans

trremoval
#_ob: vector<double>

T_in:double
T_out:vector<double>

trremoval_frac
#_frac: double

trremoval_const
#_l: int

rng

T_in:double
T_out

Figure 5:libcppsim statistics class diagram

5 Output Data Analysis

Simulation results are sequences of observations for quantities of interest. Appropriate sta-

tistical techniques should be applies to analyze these sequences, as the the observations are

in general autocorrelated.libcppsim implements a set of classes dealing with collection

of statistics. Figure5 shows the relevant portion of the class diagram.

All types of statistical variables inherit from thevar < Tin,Tout > abstract base class.

This class represents “variables” which can be updated many times by feeding values of

typeTin, and computes some function from the input data producing a result of typeTout.

Each variable has two pure virtual methods:update() andreset(). These are used to insert

a new value and reset the variable to a known state. The result can be computed by invoking

thevalue() method. Variables are not stateless; thus, it is possible that successive repeated

invocations of thevalue() method return different results. This is useful for representing a

random stream as a variable which is initially updated with the seed of the pseudo-random

number generator, and whosevalue() method returns the next pseudo-random number from
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the stream, at the same time updating the seeds. Classvar defines also a pure abstractreport()

method which can be used to display a report about the content of the class.

Thestatistics class represents a base class for a number of predefined statistic functions.

In addition to the methods and attributes defined in its parent classvar, statistics contains an

attribute representing the confidence level of the computed result. Statistics are special kind

of variables returning objects of typeconfInt (confidence intervals). The following statistics

can be computed:

mean This class is used to compute a confidence interval for the mean of a sequence of

statistically uncorrelatedobservations.

accum This class is used to compute a time-weighted sum of observationsY1, Y2, . . . Yn,

n > 1 with timestamps respectivelyt1, t2, . . . tn. The result is computed asA =∑n−1
i=1 Yi(ti+1 − ti)

repmean Computes the mean of a sequence of observations using the method of indepen-

dent replications. The simulation must be repeated a total ofR times, each run using

different random streams and independently chosen initial conditions. Averages across

replications can be used to obtain an accurate estimator of the sample mean [2].

bmeans The method ofbatch meansdivides the output data from one replication into a

number of batches, and then treating the means of these batches as if they were inde-

pendent to compute the sample mean [3].

welch This class implements the graphical procedure of Welch [19] for identifying the

length of the initial warm-up period.R independent replications are collected; the

values across the different replications are averaged and subsequently smoothed by

computing moving averages. The plot of the moving average becomes approximately

constant after the warm-up period is over.

histogram This class computes an histogram profile from a sequence of values. The user

supplies an expected lower bound and upper bound for the observed values. Also, the

user specifies the number of cells (bins) in which the histogram will be divided.

The trremoval class is used to model algorithms dealing with the removal of the ini-

tialization bias from a sequence of observations. If the simulation run produces the se-
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quence of observationsY1, Y2, . . . Yn for some parameter of interest. In general using the

whole sequence to compute the statistics is dangerous as there is a bias associated to artifi-

cial or arbitrary initial conditions. One method to overcome this limitation is to divide the

sequence of observations into two phases: first an initialization phase including observa-

tionsY1, Y2, . . . Yd, followed by a data-collection phaseYd+1, Yd+2 . . . Yn. The parameterd,

0 < d � n is calledtruncation point. Classes inheriting fromtrremoval are used to identify

the truncation pointd according to some specific algorithm.

Currently, there is no automatic, general and correct method for detecting the length

of the initialization bias. Different approaches have been proposed in the literature [20],

although their effectiveness remains dubious. For that reason, simulation packages usually

implement one of the following simple strategies:

• Removing a prefix consisting of a fixed fraction (eg, 20%) from the sequence of obser-

vations; this approach is implemented by classtrremoval frac. Classtrremoval const

can be used is the exact length of the warm-up period is known by the modeler.

• Performing a very long simulation run such that the effect of the initial transient period

can be neglected.

6 Example

We show in Fig.6 a simple usage example of thelibcppsim library. Themain() function

performs a set of initialization tasks. The first is the creation of a new simulation context

with an associated SQS object which is used by all processes; as in the original SIMULA

language, it is possible to nest simulation contexts, allowing independent simulations in-

side other simulations. At this point, one or more simulation processes can be created and

scheduled for activation, after that the simulation can be started.

7 Conclusions

In this paper we described a SIMULA -like process-oriented simulation library implemented

in C++. The library is based on the coroutine abstraction implemented as a C++ class, and
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#include <iostream>
#include "cppsim.hh"

class job : public process {
public:
    job( const string& name ) : process( name ) { 
        cout << "Created job ’" << name << "’ " << id() << endl;
    };
    virtual ˜job( ) { 
        cout << "Destroyed job ’" << name() << "’ " << id() << endl;
    };
protected:
    void inner_body( void ) {
        hold( 10 );
    };
};

class source : public process {
public:
    source( const string& name ) : process( name ) { };
    virtual ˜source( ) { };
protected:
    void inner_body( void ) {
        handle<job> j;
        for ( int i=0; i<10; i++ ) {
            hold( 5 );
            j = new job( "job" );
            j->activateAfter( current() );
        }
        stop_simulation( ); // Returns to the main() function
    };
};

int main( void )
{
    // Instantiate a simulation context with an associated SQS
    simulation::instance()->begin_simulation( new sqsDll() );
    // Create a simulation process
    handle<source> src = new source( "source" );
    // Schedule the process for execution
    src->activate();
    // Run the simulation
    simulation::instance()->run();
    // Clean up the SQS
    simulation::instance()->end_simulation();
    return 0;
};

Figure 6: Example showing the usage of thelibcppsim library

has been succesfully compiled on various versione of the Linux OS and other flavors of Unix

including Digital/Compaq OSF and NetBSD. The library provides facilities such as simula-

tion processes, random variate generators and basic statistical functions. Thelibcppsim

library has been used to implement a process-oriented simulation tool for performance eval-

uation of UML specifications [1, 15].

Due to its object-oriented nature, the library can be easily extended with additional func-

tionalities. We are currently extending the library in several directions. First, we are imple-

menting more high-level synchronization mechanisms (such as semaphores and mailboxes)

which can be useful in developing certain complex simulation models. Moreover, we are

implementing more statistical functions in order to provide the modeler with a set of more

advanced mechanisms for evaluation of the simulation results.

Availability

Full source code of thelibcppsim simulation library is available on the author’s web page

http://www.dsi.unive.it/˜ marzolla.
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