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Abstract

Resource discovery in a Grid environment is a critical
problem, as a typical Grid system includes a very large
number of resources, which must be readily identified and
accessed to run applications. Traditional Grid discovery
algorithms perform poorly, as they do not scale, nor allow
Grid-enabled applications to transparently query the whole
set of Grid resources. Peer-to-Peer (P2P) has been argued
as a suitable distributed paradigm that not only overcomes
the issues of scalability of such discovery systems, but also
better supports the discovery of resources in a context of
dynamicity of resources and associated information. In this
paper we propose a P2P system for indexing and discov-
ering Grid resources. We assume that Grid resources are
characterized by a set of attributes, and our system can be
queried for resources satisfying arbitrary range conditions
on these attributes. Note that traditional P2P searching
techniques can not be directly applied in this case, since
they work well mostly for static content and exact queries.
Simulation results show that the system provides an ade-
quate degree of scalability.

1. Introduction

Matching the needs of an application with available re-
sources is one of the basic and key aspects of a Grid system.
In order to run Grid applications, we have to look for suit-
able resources satisfying a given set of constraints, and for
which we have the access permission.

Several actual Grid implementations adopt a trivial so-
lution to resource location and selection. Given a Virtual
Organization (VO) [5], the information regarding the dis-
tributed resources of the VO are centralized. Such informa-
tion service, associated with the specific VO, is accessed by
a Grid component called Resource Broker (RB) or Work-
load Management System (WMS) [3], which is in charge
of choosing the best VO’s resource(s) for executing the job
submitted by any VO’s user. Hereinafter we will use the

acronym WMS, which is the name adopted in the EDG and
EGEE EU Projects [1] for this Grid component.

This simple solution can be viable if we consider a
Grid VO as a static entity, where each WMS is responsi-
ble for all the resources of a static VO, and every VO’s user
has to submit her/his job queries through this VO WMS (or
a replica of this WMS). Nowadays this approach is not con-
sidered suitable to make Grids economically viable and sus-
tainable. Next generation Grid have to address the needs
of dynamic virtual enterprises, through an open, interop-
erable and economic Grid architecture. So it is needed
to build the infrastructure supporting the formation of dy-
namic VOs reflecting common goals and mutual trust rela-
tionships. Since VOs should be dynamically created, the
resource set accessible from a user becomes larger, and in-
clude all the resource on which it is possible to establish a
mutual trust relationship and an agreement on the usage.

In order to permit searching and selection within a large
amount of resources, we can think about the creation of a
single, centralized index of Grid resources, which should be
used by any WMS contacted by a user. Note that, according
to this new approach, each WMS is no longer bound to a
single static VO, but can be simply thought as a manager of
a small set of local resources. Despite common beliefs, the
approach of providing a large centralized search service has
been shown viable and scalable by modern distributed Web
Search Engines, whose indexed information are, however,
mostly static. Unfortunately we have to solve this prob-
lem in a context where information about resources are dy-
namic, by achieving both scalability and efficiency in the
actual implementation.

P2P systems seem to have the characteristics required to
overcome the above-mentioned problems. Recent studies in
the field of resource discovery pointed out the possible syn-
ergies and convergence that can be exploited between the
Grid and P2P worlds [4, 10]. In general, resource discov-
ery in P2P networks is a relatively well studied problem,
and many solutions have been proposed in the literature [2].
However, most of these algorithms work well for locating
static data, i.e., whose content which does not change over
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time, or data that can be exactly identified by a key. This is
not the case for a Grid environment, since users may request
resources with characteristics that do change over time (e.g.,
CPU utilization, free disk space, and so on), or may per-
form range queries over these resource features (e.g. mem-
ory size greater than 512 MB). Some modern P2P systems,
such as those proposed in [8, 9], are not suited for this prob-
lem either because the managed data are static, or because
they work well for exact queries.

In this paper, we propose a P2P system for resource lo-
cation in Grid environments where resource attributes may
change value over time. We consider a tree-structured over-
lay network over the set of WMSes, where each node has
an exact knowledge on the set of resources directly man-
aged by it, but also a condensed description of the resources
present in every neighboring WMS with respect to the over-
lay tree. This condensed description consists of bitmap
indexes of the values of resources attributes. We use the
bitmap indexes to route queries towards the location of re-
sources possibly satisfying the query. We also describe how
the indexes can be updated if some attribute value changes.
We provide simulation results to show the potential benefits
of this approach.

This paper is organized as follows. Section 2 contains a
description of the proposed algorithm. In 2.1 we introduce
the notation and we give an abstract representation of the
problem we are considering. In 2.2 we give the algorithm
used to locate resources, and in 2.3 the algorithm used to
propagate changes over the network. Some simulation re-
sults are presented in Section 3, and conclusions and future
works are illustrated in Section 4.

2. Discovery of Dynamic Resources

2.1. The high-level structure

We assume the system is made ofN resources
{R1, R2, . . . RN}, where disjoint subsets of them are man-
aged by distinct WMSs. Each resource has a set of attributes
with corresponding values. We denote withA[R] the value
of attributeA for resourceR, and we assume that attribute
values are real numbers. In actual Grid deployments, we
may have at least two types of resources, namely Comput-
ing Element (CE) and Storage Element (SE). Each CE re-
sourceC may have attributesCpuSpeed[C] (speed of the
CPUs),NumCpus[C] (number of CPUs),RamSize[C] (max-
imum available physical memory),WaitingJobs10[C] (av-
erage number of waiting jobs over the last 10 minutes),
Utilization10[C] (utilization of the CE over the last 10 min-
utes), and others. Each SE resourceS may have attributes
Capacity[S] (total capacity of the SE),FreeSpace[S] (free
space left on the device), and others.

For each resource, some of the attributes may have con-
stant value, while others may vary over time. We assume
that variations may be arbitrary, even if in practice the mag-
nitude of such variations is usually limited, i.e. the relative
difference between two successive values is small.

Users need to locate and acquire resources in order to
execute jobs. To find the most suitable resources for a given
task, users query the system for one or more resources satis-
fying certain criteria. For example, one of such queries may
look like:

Q = {R ∈ {R1, . . . RN} | CpuSpeed[R] ≥ 2.0GHz

and RamSize[R] ≥ 512MB

and Utilization10[R] ≤ 0.3}

This query looks for a computational resource with CPU
speed at least2.0GHz, at least 512 MB of RAM and with
utilization over the last 10 minutes of at most 0.3; all other
attributes may have arbitrary values. We assume that a
generic query predicate is a boolean composition of range
conditions on some of the attributes. This is exactly the
form taken by actual Grid resource queries [7]. The query
strategy described in this paper can be applied to range
queries on numerical attributes, and also on other types of
attributes on which it is possible to define a total ordering.

In order to efficiently locate the resources matching a
given query, we propose the following search algorithm,
over a P2P network connecting all the WMSs. Suppose that
the value ofA[R] is in the range[a, b].

We choose a set ofk pivot elementsa = a0 < a1 <
. . . ak−2 < ak−1 = b and we encode the value ofA[R]
with a k bits binary string, such that thei-th bit is set to
1 if and only if A[R] ∈ [ai, ai+1). This representation,
calledbitmap index, was first described in [6]. We define
BitIdx(v) the bitmap index corresponding to valuev. Note
thatBitIdx(v) has exactly one bit set to 1.

As defined, a bitmap index is a simplified version of a
histogram. A histogram is a lossy compression technique
used for representing efficiently a relation. It is based on
partitioning one of the relation attributes into buckets, and
then storing, for each bucket, of a few summary informa-
tion in place of the detailed one. Information compres-
sion within buckets allows fast approximate answers to be
obtained, by evaluating queries on reduced data in place
of original ones. This especially works in case of range
queries. Also, observe that for different types of attributes
we may define different partitions of their domains, so that
the bitmap indexes may have different lengths.

We suppose that the WMS are connected with a tree
overlay network. Each WMSW has complete knowledge
over the values of the resources it directly manages. We
denote withNb(W ) the set of neighbors ofW , that is, the
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Figure 1. Example of two WMS W and W ′ and
a portion of their bitmap index

set of WMSes directly connected withW on the overlay
network. For eachW ′ ∈ Nb(W ), let RW (W ′) be the
set of resources on the subtree rooted atW ′ which does
not containW . W knows the bitmap index for the at-
tributes inRW (W ′). More precisely, let us denote with
W ′ → W the link fromW ′ to W in the overlay network.
For eachW ′ ∈ Nb(W ), for each attributeA of resources
in RW (W ′), W associates with the linkW → W ′ the fol-
lowing quantity:

LinkBitIdx(W → W ′, A) ≡
∨

R∈RW (W ′)

BitIdx(A[R]) (1)

which is the bitwise intersection of all the bitmap indexes
BitIdx(A)R associated with the resources inRW (W ′). Ba-
sically, for each attributeA, W knows the or-value of all
the bitmap indexes defined for the resources in the subtree
rooted inW ′. Note thatBitIdx(W ′ → W,A) is a binary
string with possibly more than one bit set to 1. We use the
valuesBitIdx(W → W ′, A) to route the query on the over-
lay network, according to algorithms described in 2.2.

As an example, consider Fig. 1. NodeW knows
that in the subtree rooted atW ′ there are resources
Utilization10[·], CpuSpeed[·] and RamSize[·] with bitmap
indexes 0011010100, 111000 and 010110010, respectively.
We summarize in Table 1 the notation used in this paper.

2.2. Query Processing

In this section we describe how queries are processed in
the system. We consider resource queries as partial range
queries, i.e. the user may look for resources with (a sub-
set of) attribute values within given ranges. User requests
are initially submitted to one of the WMS, which routes
the query and collects responses from other nodes in the
network. Routing of queries is performed according to the
strategy described below.

Nb(W ) The set of WMS directly connected toW on the
overlay network

BitIdx (v) The bitmap index for valuev

A[R] The value of attributeA for resourceR

LinkBitIdx (W → W ′, A) The bitmap index for attribute
A associated with the link fromW to W ′; it denotes
the or-value of all bitmap indexes for all instances of
A in the tree rooted inW ′ which does not containW

Table 1. Symbols used in this paper

Each WMSW receives a queryQ from one of its neigh-
bors on the overlay network. First,W checks whether it has
some resources satisfying the request; if so, a query hit is
reported. The queryQ is always forwarded to each neigh-
bor WMS (excluding the one which originally sent it) using
a BFS (Breadth First Search) algorithm. In order to avoid
flooding the entire network, queries are forwarded only to
a subset of neighbors, excluding those paths which surely
will not contain any useful resource. This technique is sim-
ilar to the Directed BFS visit described in [11]; however,
we cannot rely on statistics from previous query results to
select the neighbors (as in [11]), because the state of the
system is dynamically evolving over time. This means that
resource attributes may change value, so that past query re-
sponses do not provide any meaningful information on the
actual state of the system. Each WMS performs a Directed
BFS by checking the the bitmap indexes associated with
each neighbor. The idea is as follows: let us consider at-
tributeA[R] with domain[a, b], such that the domain is par-
titioned inton disjoint intervals[ai, ai+1), i = 0, . . . n− 1.
As already seen in Section 2.1, ifA[R] = v, then the
bitmap indexB = (b0, b1, . . . bn−1) for this attribute is de-
fined asbi = 1 ⇔ v ∈ [ai, ai+1). Considering a query
Q ≡ “v1 ≤ A[R] ≤ v′′2 . We build the bitmap representation
of the query asBQ = (bQ,0, bQ,1, . . . bQ,n−1) such that, for
everyi = 0, 1, . . . n− 1

bQ,i =

{
1 if [ai, ai+1) ∩ [v1, v2] 6= ∅
0 otherwise

(2)

If B ∧ BQ = (0, 0, . . . 0), thenR does not match query
Q. On the other hand, ifB ∧BQ 6= (0, 0, . . . 0), R maysat-
isfy queryQ; it is however necessary to compare the exact
valueA[R] = v of the attribute ofR with the query inter-
val [v1, v2] in order to know whetherR satisfiesQ or not.
We observe that an exact queryQ ≡ “A[R] = v′′ can be
expressed asQ ≡ “v ≤ A[R] ≤ v′′, and the corresponding
bitmap representationBQ can be computed as in Eq. 2; in
this case,BQ will have exactly one bit set to one: the bit cor-



responding to the bin in which the valuev falls. Note that
this approach is trivially extended to queries represented as
boolean combinations of range predicates.

In the search algorithm we propose, each nodeW for-
wards a queryQ only to neighborsW ′ ∈ Nb(W ) if
the bitmap indexesLinkBitIdx(W → W ′, A) satisfy the
bitmap representation ofQ. This ensures that the query
eventually reaches all the resources satisfying it. Also, re-
quests arenot routed to those WMS whose resources surely
won’t match the query. For example, a table associated with
the link fromW ′ to W may look like:

CpuSpeed[·] 00010010
RamSize[·] 0111100000
WaitingJobs[·] 0011010010

If W receives a range query for attributeCpuSpeed[·]
with bitmap representation 00111000, then the query can
be forwarded from toW ′; on the other hand, if a range
query for attributeRamSize[·] has bitmap representation
0000011000,W knows that none of the resources on the
subtree rooted atW ′ matches the query. Algorithm 1 de-
scribes how queries are routed and processed by each node
W . Note that replies are routed in the opposite direction
with respect to the one of query messages.

Algorithm 1 Process Query
Require: W is the WMS executing this program

1: loop
2: Wait for queryQ from WMSWin

3: for all Wout ∈ Nb(W )−Win do
4: if bitmap representation ofQ satisfied by

LinkBitIdx(W → Wout, A) then
5: RelayQ to Wout

6: Wait for all neighbors to reply
7: if any neighbor reported a match, or there is a local

matchthen
8: Report matches toWin

9: else
10: Report query failed toWin

2.3. Updating the bitmap indexes

We consider a dynamic Grid environment, where re-
sources may change attribute values over time. For this rea-
son, it is necessary to keep the bitmap indexes associated
with the links up to date. Let us suppose that the value of
attributeA for resourceR changes fromv (old value) tov′

(new value). The WMSW which is the owner of resource
R executes Algorithm 2

Basically,W computes the new bitmap index for the up-
dated value ofA[R]. If the new bitmap index is equal to the

Algorithm 2 Generate Update Message
Require: W is the WMS executing this program

1: Let v be the old value ofA[R]
2: Let v′ be the new value ofA[R]
3: if BitIdx(v) 6= BitIdx(v′) then
4: for all Wout ∈ Nb(W ) do
5: Let B := BitIdx(v′)
6: for all W ′ ∈ Nb(W )−Wout do
7: Let B := B ∨ LinkBitIdx(W → W ′, A)
8: SendB to Wout

old one, the update is not propagated. If the new bitmap in-
dex differs,W sends update messages to all its neighbors.
These updates are computed as to preserve Property 1: for
each neighborWout, the new update index to be sent toWout

is computed as:

LinkBitIdx(Wout → W,A) = BitIdx(A[R])∨ ∨
W ′∈Nb(W )−Wout

LinkBitIdx(W → W ′, A)

 (3)

Each WMS executes Algorithm 3 when receiving an up-
date message from one of its neighborsWin. Algorithm 3
computes according to Eq. 3 the new bitmap index to be
sent to neighbors.

Algorithm 3 Process Update Message
Require: W is the WMS executing this program

1: loop
2: Wait for bitmap indexB from Win for A[R]
3: if B 6= LinkBitIdx(W → Win, A) then
4: Let LinkBitIdx(W → Win, A) := B
5: if BitIdx(A[R]) ∨B 6= B then
6: for all Wout ∈ Nb(W )−Win do
7: Let B′ := (0, 0, . . . 0)
8: for all W ′ ∈ Nb(W )−Wout do
9: Let B′ := B′ ∨ LinkBitIdx(W → W ′, A)

10: SendB′ to Wout

3. Experimental Results

We now describe some performance measurements on
the algorithm described in the previous section. The re-
sults were obtained via simulation on a randomly generated
tree ofN = 500 resources; all resources are of the same
kind, and each one is bound to a different WMS. Resources
have a single attribute which assumes values in the range
[0, 1]. Initially, all resources are assigned uniformly dis-
tributed random values. In our experiments, we consider



bitmap indexes ofk bits corresponding to partitioning the
[0, 1] interval intok disjoint intervals of width1/k each.

First, we performed 100 random updates of the resources
and computed the mean number of WMSes affected by the
updates. We considered different sizes of the bitmap index,
ranging from 8 bits to 64 bits. New values for the attributes
are chosen uniformly in[0, 1].

Fig. 2 represents the 90% confidence intervals for the
mean number of affected nodes as a function of the size of
the bitmap index. We see that the number of affected nodes
increases as the bitmap size increases. This is due to the
fact that longer bitmap indexes imply that each node main-
tains more accurate information on its neighbor subtrees; if
one value gets modified, then the update message is more
likely to propagate to a bigger part of the network. Note
that the situation we simulated in Fig. 2 can be considered
as a worst-case scenario for updates. Values variations are
likely to be relatively small for most attributes commonly
used in Grid systems. For example, the mean number of
pending jobs at one CE varies continuously over time. This
implies that small variations are more likely not to change
the bitmap index, so that the update will not be propagated
outside the WMS where the update is generated.
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Figure 2. Mean number of nodes affected by
100 consecutive updates (lower is better)

In order to measure query performances, we executed
100 consecutive range queries of the formv1 ≤ A[R] ≤ v2,
for uniformly chosenv1, v2 ∈ [0, 1]. Queries originated
from a randomly chosen node, and are propagated accord-
ing to Algorithm 1. Fig. 3 shows 90% confidence intervals
of the average number of nodes which received a query mes-
sage. Query propagation is reduced by increasing the size
of the bitmap indexes. The reason is that larger indexes are
more precise, so that a larger number of queries can be be
filtered out. In the same figure we also plot the number of
query matches, which is the number of nodes whose bitmap
indexes match the query. The number of matches on the

bitmap indexes will always be greater than or equal to the
number of matches to the exact query. The reason is that an
exact match always implies a match on the bitmap index,
while the converse is not always true.
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In order to quantify the precision of the search algorithm,
we also considered the ratio:

precision=
Number of exact matches

Number of matches on the BI

The precision is always less than or equal to one; greater
values implies that the match candidates are more likely to
be also exact query matches. As we can see in Fig. 4, larger
bitmap indexes imply better precision.
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4. Conclusions

In this paper we presented a distributed algorithm for re-
source location in a dynamic Grid environment. The al-
gorithm uses simple data structures in order to efficiently
route resource queries without flooding the network. We
performed some simulation studies in order to show the ef-
fectiveness of the proposed approach.

Future research will include a more detailed simulation
study of the performance of the proposed algorithm with
respect to the overlay network topology, the location of re-
sources and the change pattern for their attributes. In par-
ticular, as the propagation of queries and updates is likely
to be influenced by the topology of the overlay network,
we will investigate how nodes can join and leave the P2P
network without altering its topological structure. Another
open problem which will be investigated is related to lim-
iting the number of links a message is allowed to traverse
before being destroyed. In this case users may be unable
to get the full list of resources satisfying a query, as poten-
tially useful resources may be beyond the horizon of mes-
sages. Clearly, a tradeoff between the value of the time-
to-live counter and ability to recall a significant fraction of
resources needs to be identified.
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