
Design and Implementation of a P2P Cloud System

Ozalp Babaoglu Moreno Marzolla Michele Tamburini

Technical Report UBLCS-2011-10

September 2011

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)



The University of Bologna Department of Computer Science Research Technical Reports are available in
PDF and gzipped PostScript formats via anonymous FTP from the area ftp.cs.unibo.it:/pub/TR/UBLCS
or via WWW at URL http://www.cs.unibo.it/. Plain-text abstracts organized by year are available in
the directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2010-02 Optimized Training of Support Vector Machines on the Cell Processor, Marzolla, M., February 2010.

2010-03 Modeling Self-Organizing, Faulty Peer-to-Peer Systems as Complex Networks Ferretti, S., February
2010.

2010-04 The qnetworks Toolbox: A Software Package for Queueing Networks Analysis, Marzolla, M., February
2010.

2010-05 QoS Analysis for Web Service Applications: a Survey of Performance-oriented Approaches from an Archi-
tectural Viewpoint, Marzolla, M., Mirandola, R., February 2010.

2010-06 The dark side of the board: advances in Kriegspiel Chess (Ph.D. Thesis), Favini, G.P., March 2010.

2010-07 Higher-Order Concurrency: Expressiveness and Decidability Results (Ph.D. Thesis), Perez Parra, J.A.,
March 2010.

2010-08 Machine learning methods for prediction of disulphide bonding states of cysteine residues in proteins (Ph.D.
Thesis), Shukla, P., March 2010.

2010-09 Pseudo-Boolean clustering, Rossi, G., May 2010.

2010-10 Expressiveness in biologically inspired languages (Ph.D. Thesis), Vitale, A., March 2010.

2010-11 Performance-Aware Reconfiguration of Software Systems, Marzolla, M., Mirandola, R., May 2010.

2010-12 Dynamic Scalability for Next Generation Gaming Infrastructures, Marzolla, M., Ferretti, S., D’Angelo,
G., December 2010.

2011-01 Server Consolidation in Clouds through Gossiping, Marzolla, M., Babaoglu, O., Panzieri, F., January
2011 (Revised May 2011).

2011-02 Adaptive Approaches for Data Dissemination in Unstructured Networks, D’Angelo, G., Ferretti, S., Mar-
zolla, M., January 2011.

2011-03 Distributed Computing in the 21st Century: Some Aspects of Cloud Computing, Panzieri, F., Babaoglu,
O., Ghini, V., Ferretti, S., Marzolla, M., May 2011.

2011-04 Dynamic Power Management for QoS-Aware Applications, Marzolla, M., Mirandola, R., June 2011.

2011-05 Large-Scale Social Network Analysis, Lambertini, M., Magnani, M., Marzolla, M., Montesi, D.,
Paolino, C., July 2011.

2011-06 Reasoning with incomplete and imprecise preferences (Ph.D. Thesis), Gelain, M., July 2011.

2011-07 Definition, realization and evaluation of a software reference architecture for use in space applications
(Ph.D. Thesis), Panunzio, M., July 2011.

2011-08 Investigating the role of single point mutations in the human proteome: a computational study (Ph.D.
Thesis), Tiwari, S., July 2011.

2011-09 Theoretical and Implementation Aspects in the Mechanization of the Metatheory of Programming Lan-
guages (Ph.D. Thesis), Ricciotti, W., July 2011.



Design and Implementation of a P2P Cloud System

Ozalp Babaoglu1 Moreno Marzolla2 Michele Tamburini3

Technical Report UBLCS-2011-10

September 2011

Abstract

Cloud Computing has gained popularity in both research and industrial communities. Cloud users can
acquire computing resources on a need basis, achieving on demand scalability. Cloud providers can max-
imize resource utilizations of datacenters, increasing their return on investments. While Cloud systems
are usually hosted in large datacenters and are centrally managed, other types of Cloud architectures can
be imagined. In this paper we describe the design and prototype implementation of a fully decentralized,
P2P Cloud. A P2P Cloud allows organizations or even individual to build a computing infrastructure
out of existing resources, which can be easily allocated among different tasks. We focus on the problem of
maintaining a coherent structure over a set of unreliable computing resources. We show that gossip-based
protocols can be used to maintain an overlay network on top of the computing nodes, and to partition the
set of resources into multiple slices in such a way that the failure of individual nodes do not compromise
the overall structure. Resource partitioning is one of the most important features of a Cloud, and there-
fore must be supported efficiently and reliably on any Cloud architecture. We describe a prototype Java
implementation that is being developed to demonstrate the effectiveness of the proposed approach.

1. Università di Bologna, Dipartimento di Scienze dell’Informazione, Mura A. Zamboni 7, I-40127 Bologna (Italy);
Email: babaoglu@cs.unibo.it
2. Università di Bologna, Dipartimento di Scienze dell’Informazione, Mura A. Zamboni 7, I-40127 Bologna (Italy);
Email: marzolla@cs.unibo.it
3. Università di Bologna, Dipartimento di Scienze dell’Informazione, Mura A. Zamboni 7, I-40127 Bologna (Italy);
Email: mtamburi@cs.unibo.it

1



1 Introduction

1 Introduction
Cloud Computing has attracted enthusiastic interest from both the research community and com-
mercial world. From the users point of view, Cloud computing provides the illusion of unlimited
and on-demand scalability. In [16] the following essential characteristics of a Cloud are identified:

1. on-demand self service: the ability to provide computing capabilities (e.g. CPU time, stor-
age) dynamically, as needed, without human intervention;

2. network access: resources can be accessed through the network by (thin or thick) client
platforms using standard mechanisms (for the most part, the HTTP protocol);

3. resource pooling: virtual and physical resources can be pooled and assigned dynamically
to clients according to their demand;

4. elasticity: resources can be provisioned dynamically in order to enable a customer appli-
cation to scale up and down quickly;

5. measured service: Cloud resource and service usages are optimized through a pay-per-use
business model.

Service models define the level of abstraction at which a customer interfaces a Cloud Com-
puting environment. These are the “Software as a Service” (SaaS) model, the “Platform as a
Service” (PaaS) model, and the “Infrastructure as a Service” (IaaS) model. In a SaaS Cloud, the
capabilities provided to a Cloud customer are application services running on the Cloud infras-
tructure; the Cloud customer has no control over the infrastructure itself. Google Apps 1 is an
example of a widely-used SaaS Cloud. In contrast, the capabilities provided by a PaaS Cloud
consist of programming languages, tools and a hosting environment for applications developed
by the Cloud customer. The PaaS Cloud user develops an application that can be executed in the
Cloud and made available to service customers; development is carried out using libraries, APIs
and tools possibly offered by some other company. Examples of PaaS solutions are AppEngine
by Google2, Force.com from SalesForce 3, Microsoft’s Azure4 and Amazon’s Elastic Beanstalk5.
Finally, a IaaS Cloud provides its customers with fundamental computing capabilities such as
processing, storage and networking where the customer can run arbitrary software, including
operating systems and applications. One of the earliest examples of IaaS Cloud is Amazon EC26.
In this paper we deal with this latter model.

From the service providers point of view, Clouds are based on conventional computing
clusters: Cloud providers invest significant resources into large datacenters, each of which is
centrally managed. Building and operating a Cloud datacenter is expensive [9], so only large
companies can afford such a huge investment. However, the current centralized approach to
Cloud computing is not the only possibility, and in some cases might not even be the optimal
choice. In [17] the authors describe a spectrum of possible Cloud architectures: centralized, fed-
erated and Peer-to-Peer (P2P) (see Figure 1).

Centralized Clouds constitute the current commercial offerings. Applications such as sci-
entific computations, data mining, Internet-scale Web Services and delay-sensitive applications
that cannot tolerate high communication delays are appropriate for the centralized model. Fed-
erated Clouds are a logical evolution of the centralized approach: they involve multiple Clouds
that are tied together to build a larger one. Federation can be used to enhance reliability through
physical partitioning of the resource pool, and also to address communication latency issues
by binding clients to the “nearest” datacenter. Furthermore, federated Clouds are an interest-
ing alternative for those companies who are reluctant to move their data out of house to a ser-
vice provider due to security and confidentiality concerns. By operating on geographically dis-
tributed datacenters, companies could still benefit from the advantages of Cloud computing by

1. http://www.google.com/a
2. http://code.google.com/appengine/
3. http://www.salesforce.com/platform/
4. http://www.microsoft.com/windowsazure/
5. http://aws.amazon.com/elasticbeanstalk/
6. http://aws.amazon.com/ec2

UBLCS-2011-10 2



1 Introduction

Figure 1. Cloud Computing Dimensions

running small Clouds in-house, and federating them into a larger Cloud. Multimedia entertain-
ment is an example where Cloud federations may be appropriate. For example, in the case of
Massive Multiplayer Online Games (MMOG), a large number of users interact in a virtual space
that must be handled with strict Quality of Service (QoS) requirements. Multiple MMOG servers
could be operated on geographically distributed Clouds in order to automatically balance the
load; all the server instances could be federated to maintain a coherent game state. Finally, by
stretching the idea of federated Clouds to the extreme, we can build a Cloud out of independent
resources that are opportunistically assembled. Such P2P Clouds could be built by assembling
individual peers without any central monitoring or coordination component. P2P Clouds can en-
able provisioning of resources at low or no cost; loosely-coupled distributed applications where
the physical location of nodes is important to keep data/computation near the end user, can ben-
efit from the P2P model. The Cloud API provides an interface for resource negotiation, allocation
and monitoring, regardless of the specific Cloud architecture.

The case for a P2P Cloud While P2P Clouds are unlikely to provide the features and QoS guaran-
tees of a centralized or federated Cloud, there are nevertheless some usage scenarios for which a
fully distributed Cloud architecture can be useful. A P2P Cloud can be assembled at virtually no
cost using existing resources; therefore, many small or medium-sized organizations could turn
idle resources into a computing infrastructure which can be partitioned among a number of in-
ternal “customers”. For example, an engineering company could partition its spare resources
(desktop PCs) among internal groups, e.g., the project team to perform structural simulations,
the IT group to analyze network access logs for intrusion detection, and the accounting group
to compute cash flow and other financial indicators for evaluation purposes. According to the
needs of the various groups, it could become necessary to shift more resources towards a specific
team (e.g., when approaching a project deadline, the engineering team would get more comput-
ing power to finish the calculations). A P2P Cloud would provide on-demand scalability, access
to computing and storage space with no single point of failure nor central management. New
resources can be added to the pool by simply installing a software daemon on them. Some appli-
cations which can be executed on a P2P Cloud include [1] embarrassingly parallel computations,
multimedia streaming, online gaming requiring low latency and a high level of interactivity, col-
laboration tools with shared data.

P2P Clouds vs Volunteer Computing Volunteer Computing (VC) is a well known computing paradigm,
where users execute third-party applications. VC systems usually require users to install a spe-
cific application on their PC; the applications fetches and processes input data from a central
location, and uploads the results; VC systems are mainly targeted at embarrassingly parallel sci-
entific applications. The widely used BOINC system [4] separates the client program from the
application-specific part: users install the BOINC client and select the project(s) they support.

UBLCS-2011-10 3



1 Introduction

IaaS Cloud Volunteer Computing P2P Cloud

Single resource provider Multiple resource providers Multiple resource providers

Virtualized environment Runs specific applications Virtualized environment

High reliability Unpredictable reliability Unpredictable reliability

Local or Geographic scale Geographic scale Local or Geographic scale

Public, private or hybrid Public Public, private or hybrid

Table 1. Comparison of IaaS Clouds, Volunteer Computing and P2P Clouds

Examples of projects running on the BOINC platform are SETI@home7 (analysis of radio sig-
nals from space to detect potential extra-terrestrial emissions), Folding@home8 (protein folding),
Einstein@home9 (gravitational wave detection), and many others. After a project has been se-
lected, the BOINC client fetches and executes the specific application (task), which is essentially
a plug-in of the client.

Clouds and VC systems have some important differences since they serve different pur-
poses; the differences are summarized in Table 1. The resources of a Cloud are generally owned
by a single entity (the Cloud provider), while VC relies on resources provided by third parties.
A IaaS Cloud provides a virtualized environment where arbitrary guest OSes and applications
can be executed; on the other hand, systems like BOINC are only capable of executing specific
applications running inside the client. Clouds ensure a high level of QoS in order to remain
competitive; VC systems, on the other hand, cannot provide any guarantees since all computing
nodes are managed by individual users, and can be shut down at any time. Clouds are hosted
on large datacenters, which can be federated to improve reliability, while VC systems are geo-
graphically distributed with some centralized control (the task and data repositories). Clouds
can be public, private or hybrid: public Clouds provision resources to the general public, private
Clouds operate only for a single organization (which is typically the Cloud owner), and hybrid
Clouds combine a public part with a private part. VC infrastructures are generally public only,
in the sense that the computing resources can in principle be used by any project. P2P Clouds
borrow features both from IaaS Clouds and from VC systems (see Table 1). A P2P Cloud differs
from a VC system because there is no central coordination nor central repository of tasks.

Our Contribution In this paper we describe the architecture and prototype implementation of Peer-
to-Peer Cloud System (P2PCS), a fully distributed IaaS Cloud infrastructure. In particular, we
focus on algorithms and protocols for (i) maintaining cohesion over a set of unreliable peers, and
(ii) partitioning (slicing) the resources into multiple sub-clouds that can be assigned to individ-
ual users. P2PCS builds on top of several gossip-based algorithms (Peer Sampling Service [15],
Slicing Service [11], T-Man [14] and others) which together implement robust and scalable high
level Cloud operations.

This paper is organized as follows: in Section 2 we briefly review the state of the art with
respect to P2P Clouds; in Section 3 we describe the system model; in Section 4 we describe the ar-
chitecture of P2PCS and describe its main components; in Section 5 we describe a Java prototype
implementation of P2PCS; finally, conclusions and future research directions will be discussed in
Section 6.

7. http://setiathome.berkeley.edu/
8. http://folding.stanford.edu/
9. http://www.einstein-online.info/

UBLCS-2011-10 4



2 Related Work

Figure 2. System Model

2 Related Work
In recent years, several authors have recognized the potential benefits of P2P Cloud architectures.
In [6] the authors sketched a general-purpose framework to support fully distributed applica-
tions running independently over a very large-scale and dynamic pool of resources. The authors
list several gossip-based protocols that can be applied to form the subclouds and to implement
bootstrapping, monitoring and control services. Building on the main idea of [6], in this paper
we present a practical architecture, with a prototype implementation, of a P2P Cloud.

A different proposal for a distributed Cloud architecture is given in [8, 7]. The authors
present Cloud@Home, a hybrid system which combines features from the VC model and Cloud
computing paradigm. It should be observed that the Cloud@Home architecture relies on cen-
tralized components, while allowing end users to contribute additional resources. On the other
hand, our proposal is fully decentralized, and does not require any central bookkeeping service.
At the time of writing we are not aware of any implementation of a Cloud@Home prototype

In [18] a different direction is taken: the authors propose a distributed computing platform
called Nano Data Centers (NaDa). NaDa uses home gateways, controlled by ISPs, to provide
computing and storage services. Using a managed peer-to-peer model, NaDa form a distributed
data center infrastructure.

We finally mention Wuala10 as an example of Cloud based storage service. Wuala allows
users to trade space on their hard disks to receive encrypted chunks of files uploaded by other
users. It must be observed that Wuala is a purely storage service, therefore it offers no support
for executing computational tasks. Our architecture, on the other hand, aims at providing both
computation and storage services.

3 System Model
We consider a large set of networked nodes which can be owned by different individuals or
organizations. Each node includes a processor, RAM, storage space and network connectivity;
we do not require that all nodes be the same: anything from a netbook to a multi-core server can
in principle be used to build a P2P Cloud.

Users of this system (which in general are the owners of the nodes) share the resources
(CPUs, memory, disks) cooperatively. To do so, they install a software daemon on each node
(Figure 2) which takes care of maintaining cohesion and gracefully handle churn; in fact nodes
are not required to be reliable, so they can join or leave the system at any time. The software

10. http://www.wuala.com/

UBLCS-2011-10 5



4 P2PCS Architecture

Figure 3. Slicing in a P2P Cloud

daemon has two separate interfaces: a user interface, through which users can inject requests into
the system, and a node-to-node interface which is used to communicate with other peers.

The most important operation provided by the P2P Cloud system is the management of
slices (partitions). A user can request a fraction of the available resources matching a given query
(e.g., the 200 nodes with fastest processor). The system checks whether the query can be satis-
fied, and if so allocates the node to the requester. Therefore, at any time the global Cloud may
contain multiple disjoint sub-Clouds assigned to users. Slices are dynamic, since users may re-
quest their partitions to grow or shrink. For example, in Figure 3(a) we show a set of nodes
connected through an unstructured overlay network; in Figure 3(b) two slices have been created
and assigned to two different users. All nodes of the same slice are connected as a ring through a
separate (not shown in the figure).

Once a slice has been setup, the owner can upload and execute applications, or a whole
Virtual Machine image which is run in a Virtual Machine Monitor. The API exposed by the user
interface at each node is similar to a conventional IaaS Cloud API, such as Amazon EC2 [3] or
Amazon S3 [2]. Some practical examples of API functions implemented in the P2PCS prototype
will be illustrated in Section 5.

Finally, we remark that the nodes are managed by their respective owners, hence no QoS
guarantee can be provided. Application failures resulting from node crashed must be handled
by the user running the application (this is what happens with conventional IaaS Clouds as well).
However, P2PCS ensures cohesion of both the global Cloud and all slices: this means that even
in case of multiple failures, the surviving nodes are still part of their slice and can interact with
other peers in the slice and in the global Cloud. Borrowing the analogy used in [6], we consider
a P2P Cloud as a real cloud made of many water droplets: while the cloud is constantly changing
since as individual drops join or leave, it always has an well defined shape. In the same way,
a P2P Cloud is made of a mutable set of resources which are kept together using gossip-based,
epidemic protocols.

4 P2PCS Architecture
In this section we give a high-level description of the P2PCS architecture. We focus on algorithmic
and protocol issues; additional details will be given in Section 5.

As already discussed, P2PCS is implemented as a collection of identical interacting pro-
cesses, each one running on a separate host. Each process is made of several software modules
that are roughly organized according to the layered structure shown in Figure 4.

The Peer Sampling Service (PSS) [15] aims at providing each node with a list of peers to
exchange messages with; this is achieved by maintaining an unstructured overlay over the set of
peers. The PSS is implemented as a simple gossip protocol, as follows. Each node maintains a list

UBLCS-2011-10 6



4 P2PCS Architecture

Figure 4. Layered architecture of the P2PCS; the shaded modules have been (at least partially) imple-
mented in the prototype.

of neighbors, called the local view; each element in the local view contains the ID (e.g., IP address)
of a neighbor and a timestamp indicating when that neighbor was first added into the local view.
Periodically, neighbors exchange and merge their local views, removing the oldest entries so that
the number of neighbors equals a user-defined value k > 0. Observe that the local views are dy-
namic, since at each message exchange a new view is constructed. Therefore, the set of neighbors
of each node is constantly changing, resulting in a dynamic random graph overlay. Using the
simple gossip protocol just described, the PSS can keep the overlay connected also in presence of
churn, i.e., nodes joining and leaving the system [15]. This feature is fundamental in a dynamic
environment where resources are managed by individual users. The PSS uses the Bootstrapping
Service [13] to gather an initial set of nodes to start the message exchange. The Boostrapping
Service is used, as the name suggests, to “cold boot” the system, since at the beginning each peer
does not know the identity of other nodes in the Cloud.

The Slicing Service (SS) [11] is used to rank the nodes according to one or more attributes.
This service is used to request slices of the whole Cloud according to some user-defined criteria,
e.g., a fraction of 5% of the total number of nodes, the top 1% fastest nodes, and so on. When a
user requests the allocation of some nodes according to a specific metric (multi-attribute metrics
can be supported as well), the SS ranks the nodes according to that metric, and returns the set of
resources matching the query. Currently, the SS is not fully implemented in our prototype: users
can request the creation of slices, but there is no possibility to select resources by specifying a
query.

The Aggregation Service (AS) [12] is used to compute global measures using local mes-
sage exchanges. The AS allows each peer to know system-wide parameters without the need
to access a global registry. Examples include the network size (number of nodes in the Cloud),
average load, number of active partitions (subclouds) and so on. The AS works as follows: each
node p keeps a value sp; periodically, sp is sent to all neighbors of p (the list of neighbors is
maintained using the PSS). When a neighbor q receives the value sp, it executes the instruc-
tion sq ← UPDATE(sq, sp) to compute a new local value sq from the old value and sp. The
function UPDATE() depends on the global value which must be computed. For example if
UPDATE(x, y) := (x + y)/2, then the protocol computes the global average of all local values;
if all values are initially zero, except for one node which is assigned local value 1, then the pro-
tocol converges to 1/N , where N is the number of peers, from which the network size N can be
estimated. The Monitoring System is implemented on top of the AS, and collects global system

UBLCS-2011-10 7



5 Prototype Implementation

Figure 5. Crating subclouds in P2PCS

parameters as illustrated above; the values computed by the Monitoring System are available to
users through an API.

The Monitoring System API provides two operations for starting and stopping the dis-
play of run-time instance information; these operations are roughly equivalent of Amazon EC2
ec2-monitor-instances and ec2-unmonitor-instances. In the current P2PCS proto-
type, the monitoring interface allows a user to display the topology of the network, and the set
of nodes of the slice a node belongs to. At the moment, the main use of the monitoring API is for
debugging purposes.

T-Man [14] is a gossip-based protocol for building an overlay network with a given topol-
ogy (tree, ring, mesh or other structures). P2PCS uses T-Man to bind together the nodes belong-
ing to the same slice, by linking all peers of the same slice with a separate ring overlay (which
is different from the random overlay maintained by the PSS). As a practical example, let us con-
sider the situation shown in Figure 5(a); there are nine nodes, labeled 1–9, connected through
a random graph overlay maintained by the PSS. Suppose that a user requests the creation of a
subcloud (slice) with 3 nodes: the system selects the requested number of nodes (for example,
nodes 1, 2 and 4) and creates a ring overlay as shown in Figure 5(b). Each node of the slice has
a direct link to its predecessor and successor. Thanks to the T-Man protocol, the ring overlay is
maintained even if nodes in the slice fail: the failed nodes are removed from the ring, and links
are rearranged to connect the surviving peers. Multiple slices can be active at the same time;
for example, if another user requests a slice with four nodes, the system may select {3, 5, 6, 8, 9},
resulting in the situation shown in Figure 5(c).

The Dispatcher is responsible for handling the requests submitted by the user through
the high level user interface, and translate them into the appropriate low level gossip protocol
commands which are sent to the other nodes.

The Instance Management API contains the interface which allows a user to manage the
resources instances: creation of a new instance, termination of an active instance, enumeration of
currently owned resources and so on. These are similar to the operations ec2-run-instances,
ec2-start-instances, ec2-stop-instances, ec2-terminate-instances and so on,
provided by the Amazon EC2 service [3].

A IaaS Cloud also provides operations to deal with storage space allocation: these opera-
tions allow users to request, grow or shrink storage space as needed. In a P2P Cloud the storage
service must be implemented as a fully distributed service. Several systems have been proposed
in the literature (see [10] and references therein). Finally, the authentication/authorization layer
is responsible for ensuring that the local node can be made available to trusted users only, should
the owner decide so.

5 Prototype Implementation
We implemented a prototype of the P2P Cloud system described in the previous sections. The
prototype has been implemented in Java, using JRMI for remote communication management.

UBLCS-2011-10 8



5 Prototype Implementation

Figure 6. Slice maintenance with node failures

The prototype currently implements the main features of the shaded modules of Figure 4; at this
time, authentication/authorization and storage space management are not implemented. The
prototype aims at demonstrating the feasibility of the idea of a fully decentralized Cloud system.
While the core algorithms used in P2PCS (Peer Sampling Service, Slicing Service, T-Man) have
been thoroughly analyzed in the literature, to the best of our knowledge this is one of the first
attempts to create a non-trivial application using them as building blocks. This is an important
result, since our experience validates the claim that complex behaviors can be engineered from
the simple interactions of well understood protocols [5].

The P2PCS prototype consists of a Java servent (server-client) which runs on all hosts that
are part of the Cloud. The prototype includes a set of Bash scripts that wrap the client-side Java
programs which invoke various operations from the user interface API. Specifically, the following
scripts are available:

• run-nodes slice id number creates a slice with number nodes; slice id is set as the name of
the newly created slice. The nodes are chosen without any particular criteria;

• terminate-nodes slice id nodeName1 . . . nodeNameN removes the named nodes from
the slice subcloud id.

• add-new nodes slice id nofnodes adds nofnodes nodes to the slice identified by slice id.
The new nodes are chosen without any particular criteria among those which do not be-
long to any slice.

• describe-instaces nodename outputs a human-readable description of the given node,
including the name of the slice it belongs to (if any), including the name of the neighbors
according to the ring overlay defined by T-Man.

• montor-instaces returns the global size of the network using the Aggregation Service;
the size is dynamically updated, until the unmonitor-instances command is invoked.

• unmonitor-instaces interrupts the display of the network size.

We now give some practical example. The command
$./startNode.sh -n node2

starts a servent on the local host, assigning to it the human-readable identifier “node2” (this
identifier is used for debugging purposes). Assuming we have started the P2PCS servent on 10
nodes, labeled as “node1”, “node2”, . . . “node10”, we can now create a slice by requiring 5 nodes.
We issue the following command:

$./run-nodes.sh -n node3 mySubCloud 5

UBLCS-2011-10 9



6 Conclusions and Future Work

This injects on node “node3” the request to create a slice called “mySubCloud” with 5
elements. The resulting slice might contains the nodes {2, 3, 6, 7, 9} organized as the ring shown
in in Figure 6(a). (recall that the nodes are chosen without a particular criteria, therefore the
command above might select any subset of 5 nodes and arrange them in any order along the
ring). Then, if we remove node 2, either by killing the P2PCS servent or using the command:

$./terminate-nodes.sh mySubCloud node2

we obtain the situation shown in Figure 6(b). The T-Man protocol automatically detects that a
node failed, and reroutes the connections of the ring overlay around node 2.

The system proved to be quite robust to failures: we allocated a larger number of nodes on
our computer lab and killed about half the nodes without disrupting the service; all remaining
nodes were able to quickly reconfigure themselves by excluding the failed peers.

6 Conclusions and Future Work
In this paper we described the architecture and prototype implementation of P2PCS, a fully dis-
tributed IaaS Cloud system. P2PCS uses gossip-based protocols to manage a large, unreliable
resource pool without any central coordinator. We developed a Java prototype to demonstrate
the main features of P2PCS: self-organization and robustness to failures. Initial results are en-
couraging and suggest that a decentralized Cloud infrastructure can indeed be realized using
well understood techniques and protocols.

We are currently working on the remaining components of the architecture, which have
been left out of the prototype: the authentication/authorization layer, the storage management
service, the bootstrap service and the query-based resource selection algorithms. Finally, we
plan to perform a comprehensive performance and reliability assessment of P2PCS through live
experiments of the prototype on a suitably sized testbed.

The source code of the P2P Cloud System can be downloaded from http://cloudsystem.
googlecode.com/svn/trunk/source/, and is distributed under the terms of the GNU Gen-
eral Public License (GPL), version 3.

References
[1] Clouds and peer-to-peer. URL, June 11 2009. http://berkeleyclouds.blogspot.

com/2009/06/clouds-and-peer-to-peer.html.

[2] Amazon. Amazon Simple Storage Service API Reference (API Version 2006-03-01), Mar. 2006.
Available at http://docs.amazonwebservices.com/AmazonS3/latest/API/.

[3] Amazon. Amazon Elastic Compute Cloud API Reference (API Version 2011-07-15),
July 2011. Available at http://docs.amazonwebservices.com/AWSEC2/latest/
APIReference/.

[4] D. P. Anderson. Boinc: A system for public-resource computing and storage. In Proceed-
ings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, pages 4–10,
Washington, DC, USA, 2004. IEEE Computer Society.

[5] O. Babaoglu and M. Jelasity. Self-∗ properties through gossiping. In Philosophical Transactions
A of the Royal Society, volume 366, pages 3747–3757. October 2008.

[6] O. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Montresor, and M. van Steen. Managing
clouds: a case for a fresh look at large unreliable dynamic networks. SIGOPS Oper. Syst.
Rev., 40:9–13, July 2006.

UBLCS-2011-10 10



REFERENCES

[7] V. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa. Cloud@home: Bridging the gap be-
tween volunteer and cloud computing. In D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J. Kang, and
V. Bevilacqua, editors, Emerging Intelligent Computing Technology and Applications, volume
5754 of Lecture Notes in Computer Science, pages 423–432. Springer Berlin / Heidelberg, 2009.

[8] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa. Volunteer computing and desktop
cloud: The cloud@home paradigm. Network Computing and Applications, IEEE International
Symposium on, 0:134–139, 2009.

[9] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems
in data center networks. SIGCOMM Comput. Commun. Rev., 39:68–73, December 2008.

[10] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell. A survey of peer-to-peer
storage techniques for distributed file systems. In Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC’05) - Volume II - Volume 02, ITCC ’05,
pages 205–213, Washington, DC, USA, 2005. IEEE Computer Society.

[11] M. Jelasity and A.-M. Kermarrec. Ordered slicing of very large-scale overlay networks. In
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, pages 117–124,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] M. Jelasity, A. Montresor, and Ö. Babaoglu. Gossip-based aggregation in large dynamic
networks. ACM Trans. Comput. Syst., 23(3):219–252, 2005.

[13] M. Jelasity, A. Montresor, and O. Babaoglu. The bootstrapping service. In Proceedings of the
26th IEEE International Conference/Workshops on Distributed Computing Systems, ICDCSW’06,
pages 11–, Washington, DC, USA, 2006. IEEE Computer Society.

[14] M. Jelasity, A. Montresor, and Ö. Babaoglu. T-man: Gossip-based fast overlay topology
construction. Computer Networks, 53(13):2321–2339, 2009.

[15] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-based
peer sampling. ACM Trans. Comput. Syst., 25(3), 2007.

[16] P. Mell and T. Grance. The NIST Definition of Cloud Computing (Draft)–Recommendations
of the National Institute of Standards and Technology. Special publication 800-145 (draft),
Gaithersburg (MD), Jan. 2011.

[17] F. Panzieri, O. Babaoglu, V. Ghini, S. Ferretti, and M. Marzolla. Distributed computing
in the 21st century: Some aspects of cloud computing. Technical Report UBLCS-2011-03,
Department of Computer Science, University of Bologna, Italy, May 2011.

[18] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez. Greening the internet
with nano data centers. In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, CoNEXT ’09, pages 37–48, New York, NY, USA, 2009. ACM.

UBLCS-2011-10 11


