PMC: A Performance Monitoring system for Clusters

Moreno Marzolla
Email marzolla@dsi.unive.it
Web: http://www.dsi.unive.it/~marzolla

Dip. Informatica, Università di Venezia
BaBar Farm @ INFN Padova

- ≈150 2xPIII 1.26GHz Machines, 1GB Ram, RH Linux 7.2
- Tape Library with a capacity of ~70TB not compressed;
- Network switch, UPSes, Environmental conditioning system,
...
Monitoring Requirements

- **Hardware Status**
 - Machine Crashes, disk crashes, CPU temperatures, disk/partitions overflows...

- **Processes status**

- **Environmental conditions**
 - Humidity, Temperature, UPS status...

- **System administrators should be notified as soon as a problem occurs**
 - Some automatic action should be taken when possible (e.g., shut down the machines if overheated).
Other requirements

• The monitoring system should also be:
 - **Scalable**
 - Efficient (little resources requirement)
 - Flexible and customizable
 - **Easy to configure**
 - Should be able to operate in *batch mode* (as a regular UNIX daemon, no GUI)
 - Should be able to observe different quantities with different granularities
 • eg, CPU utilization sampled every 5 seconds, CPU temperature sampled every minute, ...
Some existing monitoring tools

- There are *many* of them:
 - MRTG http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
 - Ngop http://www-isd.fnal.gov/ngop/
 - Netsaint/Nagios http://www.nagios.org/
 - Ganglia http://ganglia.sourceforge.net/
 - RemStats
 http://silverlock.dgim.crc.ca/remstats/release/index.html
 - Cricket http://cricket.sourceforge.net/
 - GxSNMP http://www.gxsnmp.org/
 - ... (add your own here)
What's wrong?

- We examined some publicly available monitoring tools.
 - Also organized a workshop in Padova with vendors and other people from the HEP community
- Many of them were not suited to us:
 - Not scalable
 - Require their own daemons running on the monitored hosts
 - Can't install a daemon on a network switch, or on a tape library
 - Hard to configure
 - In many cases we gave up without trying the program.
 - Poorly implemented
Architectural sketch

User Interface

User Interface

User Interface

Monitor

Collector

Collector

Observer

Observer

Observer

Observer

Observer

Observer

Hardware

Hardware

Hardware

Hardware

Hardware
The Observer

- The Observer must be able to collect statistics on any networked equipment
- We decided to use **SNMP (Simple Network Management Protocol)**
 - It is a well-known protocol
 - It is implemented by virtually every vendor
 - It is reasonably simple yet powerful
 - A very good open source implementation is available on Unix/Linux platforms

More on SNMP

Manages Resources

SNMP Managed Objects

SNMP Messages

Network Protocol

IP

UDP

SNMP

GetRequest

GetNextRequest

SetRequest

GetResponse

Trap

GetRequest

GetNextRequest

SetRequest

GetResponse

Trap

LAN/WAN

W. Stallings, *SNMP, SNMPv2, SNMPv3 and RMON 1 and 2*, 3rd edition, p. 81
The Collector/Monitor (PMC)

• Asynchronous (nonblocking) parallelized SNMP Polling;
• XML-based configuration file;
• The RRDTool package is used to store data and produce graphs
 – Old data have lower resolution than recent ones.
 – Round Robin Databases have known maximum size.
 – Graphing capabilities are provided by the library.
• Dynamic generation of HTML pages using XSLT stylesheets.
Architecture

XML Configuration File

<?xml version="1.0" standalone="no"?>
<!DOCTYPE monitor SYSTEM "monitor.dtd">
<monitor>
 ...
</monitor>

Monitored Hosts

PMC

HTTPD

Status

Stylesheets

XSLT Stylesheet 1

XSLT Stylesheet 2

HTML Pages

HTML Page 1

HTML Page 2

Host 1

Host 2

Host n
Example of XML Configuration File

```xml
<?xml version="1.0" standalone="no"?>
<!DOCTYPE monitor SYSTEM "monitor.dtd">

<monitor numconnections="20" asclogfile="/monitor/asc.log"
    httpdlogfile="/dev/null" rrddir="/monitor"
    htmldir="/monitor/html" ascverbosity="3">
    <host name="localhost">
        <description>This machine</description>
        <miblist>
            <mib id="cpuUser" name=".1.3.6.1.4.1.2021.11.50.0" type="COUNTER">
                <archives>
                    <rra cf="AVERAGE" granularity="60" expire="604800"/>
                </archives>
            </mib>
        </miblist>
    </host>
</monitor>
```
Example of XML Status Dump

```xml
<?xml version="1.0"?>
<hosts>
  <host name="localhost" status="NR">
    <mibs>
      <mib id="availSwap" lastUpdated="1018016033">1052248.000000</mib>
      <mib id="totalSwap" lastUpdated="1018016033">1052248.000000</mib>
      <mib id="totalMem" lastUpdated="1018016033">917080.000000</mib>
      <mib id="cachedMem" lastUpdated="1018016033">7128.000000</mib>
      <mib id="bufferMem" lastUpdated="1018016033">35052.000000</mib>
      <mib id="sharedMem" lastUpdated="1018016033">0.000000</mib>
      <mib id="freeMem" lastUpdated="1018016033">833800.000000</mib>
      <mib id="cpuSystem" lastUpdated="1018016033">137587.000000</mib>
      <mib id="cpuUser" lastUpdated="1018016033">13581.000000</mib>
      <mib id="tempCpu2" lastUpdated="1018016033">24500.000000</mib>
      <mib id="tempCpu1" lastUpdated="1018016033">25000.000000</mib>
      <mib id="tempMB" lastUpdated="1018016033">33000.000000</mib>
    </mibs>
  </host>
</hosts>
```

Moreno Marzolla
Sample HTML Output

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25%</td>
<td>25%-50%</td>
<td>50%-75%</td>
<td>> 75%</td>
<td></td>
</tr>
</tbody>
</table>

Farm Overview

Machines are listed in alphabetical order. The meaning of the box colors is the following:

- bbr-cluster02
- bbr-cluster03
- bbr-cluster04
- bbr-cluster05
- bbr-cluster06
- bbr-darmac07
- bbr-darmac08
- bbr-darmac09
- bbr-darmac10
- bbr-darmac11
- bbr-darmac12
- bbr-darmac13
- bbr-darmac14
- bbr-export01priv
- bbr-export02priv
- bbr-farm001
- bbr-farm002
- bbr-farm003
- bbr-farm004
- bbr-farm005
- bbr-farm006
- bbr-farm007
- bbr-farm01
- bbr-farm02
- bbr-farm03
- bbr-farm04
- bbr-farm05
- bbr-farm06
- bbr-farm07
- bbr-farm08
- bbr-farm09
- bbr-farm10
- bbr-farm11
- bbr-farm12
- bbr-farm13
- bbr-farm14
- bbr-farm15
- bbr-farm16
- bbr-farm17
- bbr-farm18
- bbr-farm19
- bbr-farm20
- bbr-farm21
- bbr-farm22
- bbr-farm23
- bbr-farm24
- bbr-farm25
- bbr-farm26
- bbr-farm27
- bbr-farm28
- bbr-farm29
- bbr-farm30
- bbr-farm31
- bbr-farm32
- bbr-farm33
- bbr-farm34
- bbr-farm35
- bbr-farm36
- bbr-farm37
- bbr-farm38
- bbr-farm39
- bbr-farm40
- bbr-farm41
- bbr-farm42
- bbr-farm43
- bbr-farm44
- bbr-farm45
- bbr-farm46
- bbr-farm47
- bbr-farm48
- bbr-farm49
- bbr-farm50
- bbr-farm51
- bbr-farm52
- bbr-farm53
- bbr-farm54
- bbr-farm55
- bbr-farm56
- bbr-farm57
- bbr-farm58
- bbr-farm59
- bbr-farm60
- bbr-farm61
- bbr-farm62
- bbr-farm63
- bbr-farm64
- bbr-farm65
- bbr-farm66
- bbr-farm67
- bbr-farm68
Sample HTML Output
What we are monitoring

- **CPU Utilization**
 - User/System/Idle
- **Disk I/O**
 - Not perfect due to kernel limitation
- **Network I/O**
- **Temperature of the CPUs**
 - On some machines only. Problem with IBM Service Processor locking the SMbus
- **Load Average**
- **Network I/O and link errors on the switch**
What we concluded so far

- Monitoring a large computing cluster is a highly nontrivial task.
- Many available monitoring tools exist, but many of them are not adequate for large distributed systems.
- We are building a general-purpose SNMP and XML-based monitoring tool.
- A prototype exists and is working
 - ...but see next slide
Problems and to-do list

- Alarms are not implemented yet
 - Hope to do so Really Soon™
- Facing scalability problems
 - Each SNMP variable is stored in a RR Database…
 - …So we have > 4000 RR Databases right now, to update every 10 seconds
 - The monitor machine “freezes” during the updates
- Occasional crashes
 - Probably caused by a bug in the HTTP server code
 - We are going to replace that code with a lightweight HTTP server library (SWILL)