Simulation Modeling of UML Software Architectures

Simonetta Balsamo, Moreno Marzolla

Dipartimento di Informatica, Università Ca' Foscari di Venezia
{balsamo, marzolla}@dsi.unive.it
Software Performance Modeling

- Early identification of performance problems in Software Architectures is very useful
 - Changing the design costs more if done late
- Two approaches to SA performance evaluation
 - Measurement-based
 - require a running system
 - Model-based
 - can be done at the design stage
Model-Based Approach

Software Architecture

Software Model

Performance Model

Performance Results

Perf. Model Evaluation

Feedback

UML-Ψ
Simulation for Software Performance Evaluation

- Simulation often considered a solution technique for analytical performance models
- Our approach: use simulation as the performance model
- Advantages:
 - Mapping between software model and performance model very easy
 - Can represent general software models
 - Easy to report feedback
UML

- UML is a standard notation for high-level software description
- Different kinds of diagrams available
- UML-Ψ uses two kinds of diagrams:
 - Use Case Diagrams
 - Activity Diagrams
The Simulation (Meta)Model

![Diagram of the Simulation (Meta)Model]

- **PerformanceContext**
- **Workload** with attributes:
 - population : Integer
 - externalDelay : PAperfValue
- **ClosedWorkload** with attributes:
 - population : Integer
 - externalDelay : PAperfValue
- **OpenWorkload** with attributes:
 - occurrencePattern : RTarrivalPattern
- **PScenario** with attributes:
 - root
 - steps
- **PResource**
- **AbsStep** with attributes:
 - probability : Double
 - repetition : Integer
 - delay : PAperfValue
 - interval : PAperfValue
 - PDemand : PAperfValue
 - responseTime : confInterval
- **PStep**
- **Pstep_fork**
- **PStep_join**
 + _successors
 + _predecessors
Use Case Diagrams

- Actors are used to represent workloads applied to the system.
- Each new user performs one of the associated Use Cases.
Activity Diagrams

- Each Use Case is expanded into a number of activities

Browse Catalog

Make Order

- Issue Request
 - PAdemand=["assm","dist", ["exponential",1.0/2.0]]
- Compose Page
 - PAdemand=["assm","dist", ["exponential",1.0/1.0]]
- Select Product
 - PAdemand=["assm","dist", ["exponential",1.0/15.0]]
 - PAdelay=["assm","dist", ["exponential",1.0/35.0]]
- Fill Order Form
- Process Order
- Verify Payment
 - PAdemand=["assm","dist", ["exponential",1.0/2.0]]
How UML-Ψ works / 1

- The starting point is a set of UML Use Case and Activity diagrams.
 - We use ArgoUML as a graphical tool for manipulating UML diagrams
- UML diagrams are exported in XMI format
- UML-Ψ parses the XMI file, building the simulation model
 - Actors → Workload
 - Use Cases → PScenario
 - Activities → AbsStep
How UML-Ψ works / 2

- Annotations define parameters of the simulation model
- The simulation model is executed
 - Based on a custom process-oriented, discrete-event C++ simulation library, providing SIMULA-like process scheduling facilities
- Simulation computes the average delays of Activities and Use Cases execution
- Results are put into the original XMI file as tags associated to the appropriate UML element
Conclusions

- We proposed a simulation-based performance modeling approach for UML software architectures
- UML annotations based on a subset of the UML Performance Profile
- Simulation model is implemented in C++
- Feedback reported at the UML level
Future Work

- We are currently working on resource modeling in a UML context using Deployment diagrams
 - Active resources have been implemented
 - Passive resources still work in progress
- We are also extending the approach to performance evaluation of mobile systems
 - No “standard” way to represent mobility in UML