Simulation Modeling of UML Software Architectures

Simonetta Balsamo, Moreno Marzolla

Dipartimento di Informatica, Università Ca' Foscari di Venezia {balsamo,marzolla}@dsi.unive.it

Software Performance Modeling

- Early identification of performance problems in Software Architectures is very useful
 - Changing the design costs more if done late
- Two approaches to SA performance evaluation
 - Measurement-based
 - require a running system
 - Model-based
 - can be done at the design stage

Model-Based Approach

Simulation for Software Performance Evaluation

- Simulation often considered a solution technique for analytical performance models
- Our approach: use simulation as the performance model
- Advantages:
 - Mapping between software model and performance model very easy
 - Can represent general software models
 - Easy to report feedback

UML

- UML is a standard notation for high-level software description
- Different kinds of diagrams available
- UML-Ψ uses two kinds of diagrams:
 - Use Case Diagrams
 - Activity Diagrams

The Simulation (Meta)Model

Use Case Diagrams

 Actors are used to represent workloads applied to the system

Each new user performs one of the

associated Use Cases

M. Marzolla, S. Balsamo

Activity Diagrams

Each Use Case is expanded into a number of activities

How UML-Y works / 1

- The starting point is a set of UML Use Case and Activity diagrams.
 - We use ArgoUML as a graphical tool for manipulating UML diagrams
- UML diagrams are exported in XMI format
- UML-Ψ parses the XMI file, building the simulation model
 - ullet Actors igtharpoonup Workload
 - Use Cases → PScenario
 - Activities \rightarrow AbsStep

How UML-Ψ works / 2

- Annotations define parameters of the simulation model
- The simulation model is executed
 - Based on a custom process-oriented, discreteevent C++ simulation library, providing SIMULAlike process scheduling facilities
- Simulation computes the average delays of Activities and Use Cases execution
- Results are put into the original XMI file as tags associated to the appropriate UML element

Conclusions

- We proposed a simulation-based performance modeling approach for UML software architectures
- UML annotations based on a subset of the UML Performance Profile
- Simulation model is implemented in C++
- Feedback reported at the UML level

Future Work

- We are currently working on resource modeling in a UML context using Deployment diagrams
 - Active resources have been implemented
 - Passive resources still work in progress
- We are also extending the approach to performance evaluation of mobile systems
 - No "standard" way to represent mobility in UML

