Valutazione delle prestazioni di Architetture Software con specifica UML mediante QN multiclasse

Moreno Marzolla
Dipartimento di Informatica
Università Ca' Foscari di Venezia

Riunione FIRB/PERF—1/2 dicembre 2004
Software Performance Modeling

Software Model

UML Model

QN Model

Performance Results

Feedback

Model Evaluation

Modeling Algorithm
Performance Modeling Framework

Annotated UML Model

Simulation Model
Sim Model Execution

QN Model
QN Model Evaluation

Performance Results
Performance Modeling with multiclass QN

- **Starting point**
 - Use Case diagrams (workloads)
 - Deployment diagrams (hardware model)
 - Activity diagrams (system execution model)

- **Target notation**
 - Mixed Multiclass QN model
 - Use Case diagrams ➔ Workloads
 - Deployment diagrams ➔ Service centers
 - Activity diagrams ➔ Topology
Why?

- Performance model generation can be done efficiently
 - $O(\#transitions + \#action\ states)$
- Performance model can be solved efficiently
 - If some constraints are satisfied
- The approach uses standard UML SPT profile annotations
 - Can be integrated with existing software performance modeling frameworks based on the profile
Translating UC diagrams

\[
\lambda
\]

<<PAopenLoad>>

<<PAclosedLoad>>
Translating Activity diagrams
the easy case

A1 → R1
A2 → R2, R3
A3 → R1, R2, R3
Translating Activity diagrams the difficult case

A1 -> R1

A2

A3 -> R2

R1

R2
Outline of the transformation algorithm

- Translate one Activity diagram at a time
 - Each Activity diagram corresponds to a single chain
- Resources correspond to service centers
- Translate an Activity diagram as follows
 - All actions requesting service from the same resource receive a unique label in the range $[1..k]$
 - If there is a transition with probability p from an action with label r requesting service from resource i to an action with label s requesting service from resource j
 - Set $P[i,r,j,s] = p$
Example