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We consider an open queueing network consisting of servers linked in an arbitrary
configuration with exponential service times and separated by intermediate finite buffers.
The model allows any number of saturated servers (never starved) and exit servers (never
blocked). The considered blocking mechanism is blocking-after-service. In the case of
simultaneous blocking, blocked customers enter the destination node on a first-blocked-
first-enter basis. If feedback loops exist in the network, deadlocks may arise. We assume
that a deadlock is detected and resolved instantaneously by transferring all the blocked
customers simultaneously. In this paper, we present an approximation method to analyze
this kind of networks. The method decomposes the original network into subsystems. Each
subsystem is composed of one or many upstream servers and one downstream server,
separated by a finite buffer. The upstream and downstream servers are characterized by
exponential service time distributions. Based on the symmetrical approach [2], we develop
an algorithm to determine the unknown parameters corresponding to each subsystem. The
class of models considered in this paper includes the class of open loss models for feed-
forward networks considered by Lee and Pollock [11]. For this class of models, we can
show that the system of equations in our algorithm is equivalent to the one used in the
algorithm proposed by Lee and Pollock. As a result, our algorithm provides the same results
as the algorithm of Lee and Pollock for this class of models. However, it is observed that
our algorithm takes less CPU execution time than the one proposed by Lee and Pollock. For
the cases of networks with feedback loops, extensive numerical experiments show that the
new algorithm, in general, converges very fast and yields accurate results compared with
those obtained by simulation as long as deadlocks do not occur too frequently. Moreover,
for the merge configuration, we provide the proof of  the convergence of the algorithm as
well as the existence and uniqueness of the solution by exploiting the properties associated
with a symmetric approach.
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1. Introduction

Queueing networks with finite buffers are useful for modeling and analyzing
discrete event systems, including manufacturing systems, computer systems and com-
munication systems. In the case of manufacturing systems, flow line systems can be
modeled as tandem configuration of queueing networks with finite buffers while job
shop systems can be modeled as arbitrary configuration of queueing networks with
finite buffers.

In queueing networks with finite buffers, blocking may occur because of the
finiteness of buffers. Different types of blocking mechanisms have been considered
in the literature [13]: blocking-after-service (also referred to as type-1 blocking, trans-
fer blocking, and manufacturing blocking), blocking-before-service (also referred to
as type-2 blocking, service blocking, and communication blocking), and repetitive-
service blocking (also referred to as type-3 blocking, and rejection blocking). In
blocking-after-service, a server is blocked if the destination buffer of the customer is
full after completion of the service of a customer. In blocking-before-service, the
service of a customer is not allowed to start until there is room available in its desti-
nation buffer. In repetitive-service blocking, a customer attempts to join its destination
buffer upon service completion. If this buffer is full, the customer receives another
service and this is repeated until space becomes available in the destination buffer. A
comparison of these types of blocking can be found in Onvural and Perros [12] and
Perros [13]; see also [3].

In general, queueing networks with finite buffers are difficult to analyze due to
blocking. Therefore, only under limited conditions, can exact solutions be obtained.
For this reason, most analyses are based on approximation, numerical or simulation
methods. Many approximation methods have been proposed for analyzing open queue-
ing networks with finite buffers. See Perros [13] and Dallery and Gershwin [3] for
a complete list of references. Most of the approximation analyses are based on
decomposition. The basic idea is to decompose the queueing network into individual
subsystems and analyze each subsystem in isolation.

According to the recent work by Dallery and Frein [2] for the tandem configura-
tion under blocking-after-service, all decomposition methods involve three steps: (1)
the characterization of the subsystem, (2) the derivation of a set of equations to deter-
mine the unknown parameters of each subsystem, (3) the derivation of an algorithm
for solving this set of equations. They observed that although three sets of equations
can be derived to determine the unknown parameters in step 2, only two sets of
equations are actually used. Therefore, decomposition methods can be classified into
three main approaches according to which equation sets are used in step 2. They found
that these three approaches yield the same results if subsystems are characterized and
solved in the same way. One of these approaches, which offers a symmetrical view of
decomposition, is of special interest because the algorithm based on this symmetrical
approach is, in general, faster than those based on the other approaches. Moreover, in
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the case of exponential characterization of subsystems, they proved the convergence
of the algorithm as well as the existence and uniqueness of the solution associated
with the symmetrical approach.

In this study, we extend the symmetrical approach to the arbitrary configuration
of open queueing networks with exponential service times and under blocking-after-
service. Some approximate algorithms have been developed for the analysis of arbi-
trary configurations of open queueing networks with finite buffers. Labetoulle and
Pujolle [9] and Kerbache and Smith [5] developed decomposition algorithms
under repetitive-service blocking with fixed destination. Kouvatsos and Xenios [7]
developed an approximation algorithm under repetitive-service blocking with random
destination using a maximum entropy method. In this study, service times as well as
interarrival times are assumed to have a generalized exponential distribution. They
extended the maximum entropy algorithm to the queueing networks with multiple
server nodes and under repetitive-service blocking [8]. The maximum entropy algo-
rithm was further generalized by Kouvatsos and Denazis [6] to the open queueing
networks under repetitive-service blocking with random destination and multiple job
classes.

For the analysis of open queueing networks with arbitrary configuration and
under blocking-after-service, some approximate algorithms have been developed
by Takahashi et al. [15], Altiok and Perros [1], Perros and Snyder [14], Jun and
Perros [4] and Lee and Pollock [11]. In these algorithms, except for the algorithm by
Jun and Perros, feedback loops are not allowed, i.e., only networks with feed-forward
topologies are considered. In these previous algorithms, open loss models were
analyzed in which external arrivals occur to one [1, 14,15] or more than one node
[4, 11] in accordance with Poisson processes. External arrival which occurs when the
buffer is full is assumed to be lost. Another common feature of these algorithms is the
way the network is decomposed. In these algorithms, each subsystem consists of a
finite buffer and a server fed by an external arrival process. In the algorithm of
Takahashi et al., the arrival process to each subsystem is characterized by a Poisson
process and the service time at each subsystem is characterized by an exponential
distribution. In this algorithm, a set of simultaneous nonlinear equations are developed
to determine the unknown parameters. In the algorithm of Altiok and Perros, the arrival
process to each subsystem is characterized by a Poisson process, while the service
time at each subsystem is characterized by a phase-type distribution. Perros and Snyder
developed an improved algorithm over that by Altiok and Perros. They characterized
service times at each subsystem by a two-phase Coxian (C2) distribution. Jun and
Perros extended this algorithm to the network with feedback loops. In this algorithm,
it is assumed that a deadlock is resolved instantaneously by exchanging all the blocked
customers simultaneously. In this algorithm, the arrival process to each subsystem
is characterized by a Poisson process and the service time at each subsystem is
characterized by a C2 distribution, as in the algorithm of Perros and Snyder. However,
in order for this C2 distribution to reflect all the possible blocking delays and deadlocks
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in the original system, a very complicated phase-type distribution should be con-
structed beforehand. This phase-type distribution is then simplified to the C2 distri-
bution using a three-moment approximation. Although this algorithm is reported to be
very accurate, it appears that due to the complicated feature, the use of this algorithm
is restricted to networks which consist of nodes with at most two directly linked
upstream servers. In the algorithm of Lee and Pollock, service time at each subsystem
is characterized by an exponential distribution. However, in this algorithm, the arrival
process to each subsystem is not characterized by a single Poisson process. Instead, it
is characterized by several independent Poisson processes, each of which is considered
to be generated by the upstream server directly linked to the node represented by the
subsystem. In addition to using a more accurate representation of the arrival process,
each subsystem is analyzed exactly by using an efficient state aggregation technique.
Due to this fact, Lee and Pollock’s algorithm is reported to provide very accurate
results despite the simplification of exponential characterizations.

Owing to this merit, we use, in our algorithm, the procedure developed in Lee and
Pollock to analyze each subsystem. In fact, our algorithm characterizes and analyzes
the subsystem in the same way as Lee and Pollock’s algorithm. Consequently, for the
class of models considered by Lee and Pollock, our algorithm yields the same results
as their algorithm. However, our algorithm is more general than the algorithm of Lee
and Pollock in that our algorithm can analyze a more general class of networks than
the one considered by Lee and Pollock, namely networks with loops. In addition, since
our algorithm is based on the symmetrical approach, it has some advantages over the
previous algorithms as observed in the case of tandem configuration. That is, our
algorithm is faster than the previous algorithms and, in case of merge configuration,
the convergence of the algorithm as well as the existence and uniqueness of the solu-
tion can be proved.

This paper is organized as follows. In section 2, after describing the model, we
present the new approximation method. Three steps which are involved in the decom-
position method are described in detail. In section 3, to show the performance of
the algorithm, computational results are reported for the various problem sets with
different topologies. In section 4, we establish some theoretical properties for the
merge configuration such as convergence, existence and uniqueness. Finally, some
conclusions are given in section 5.

2. Decomposition method

2.1. Description of the model

The network we consider consists of servers linked in an arbitrary configuration
with exponential service times separated by intermediate finite buffers. The model
allows any number of saturated servers (never starved) and exit servers (never
blocked). We assume that there are M non-saturated servers and each non-saturated
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server has an intermediate finite buffer preceding it. The non-saturated servers will be
denoted by Si , for i = 1,…,M, and the buffer preceding server Si is denoted by Bi , for
i = 1,…,M. In comparison with the classical open model, we call this type of network
the saturated model since there is no external arrival process.

Let Ci be the capacity of buffer Bi , including the server space in front of server
Si . A server and its preceding buffer will be called a node in this paper. Let a saturated
server linked to buffer Bibe denoted by Soi. The service time of server Si is expo-
nentially distributed with rate µi and the service time of server Soi is exponentially
distributed with rate µoi. A customer who has completed service at Si gets its next
service at Sj with probability rij . A customer who has completed service at Soi gets its
next service at Si . The probability that a customer leaves the queueing system after
completing service at Si is rio. (Note that rio = 1 if Si is an exit server.) Figure 1 shows
an example of a network with four non-saturated servers and two saturated servers.

Figure 1. An example of a network with four non-saturated
servers and two saturated servers.

The blocking mechanism assumed in this paper is blocking-after-service.
Suppose, upon completion of its service at Si , a customer attempts to enter node j. If
buffer Bj is full at that instant, the customer is forced to stay at node i until a space
becomes available at node j. During this period, server Si is blocked and node j is
blocking. Since there are more than one upstream servers directly linked to node j,
more than one upstream server can be blocked simultaneously by node j. In this case,
we assume that the corresponding blocked customers enter node j on a first-blocked-
first-enter basis.

Since the nodes are linked in an arbitrary configuration, deadlocks may occur.
Consider for example the network of figure 1. Suppose that nodes 1, 2 and 4 are full
and that S1 is blocked by node 2 and S2 is blocked by node 4. A deadlock will occur if,
when a service completion occurs at S4, the customer chooses to go to node 1. We
assume that a deadlock is detected and resolved instantaneously by exchanging all the
blocked customers simultaneously as assumed in the paper by Jun and Perros [4].
This deadlock resolution mechanism may cause the violation of the first-blocked-first-
enter priority rule. For instance, in the case of the deadlock we have just illustrated,
suppose that both S2 and S3 were blocked by node 4 but S3 had been blocked longer
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than S2. In this case, when a deadlock occurs, a customer at S2 instead of the one at S3

enters node 4 according to the deadlock resolution mechanism.
We have assumed that the blocking mechanism at any server is blocking-after-

service. Alternatively, we also allow saturated servers to operate under a repetitive-
service blocking mechanism. By doing that, the class of models considered in this
paper includes the class of open loss models considered by previous authors [1,4,11,
14,15], in which each node can be fed by an external Poisson arrival process. The
open loss model equivalent to the saturated model in figure 1 assuming that the block-
ing mechanism at S01 and S03 is repetitive-service blocking is shown in figure 2.

Let Ui denote the index set of upstream servers directly linked to buffer Bi and
Di denote the index set of downstream buffers directly linked to server Si . Let Ni denote
|Ui|, i.e., the number of elements in set Ui . Also, let f (i, j), for i = 1,…,Nj, be the
index of the i th upstream server directly linked to buffer Bj . If there is a saturated
server preceding Bj , this server is always considered to be the first upstream server of
node j. For instance, for the network in figure 1, we have:

U1 = {01, 4},  U3 = {03, 1, 2}, D2 = {3, 4},  N1 = 2, N3 = 3,

f (1,3) = 03, f (2,3) = 1, f (3,3) = 2.

2.2. Decomposition of the original system

To analyze the network, we will use the decomposition method which decom-
poses the original network into M subsystems, T( j ), j = 1,…,M. Subsystem T( j ) is
composed of a set of upstream servers Sui ( j ), i = 1,…,Nj and a downstream server
Sd( j ), separated by a finite buffer B( j ). The upstream servers Sui ( j ) are never starved
and the downstream server Sd( j ) is never blocked. Subsystem T( j ) approximates the
flow of customers in buffer Bj of the original system. In T( j ), the intermediate buffer
B( j ) has the same capacity Cj as that of buffer Bj . Server Sui ( j ) represents node f (i, j)
and its upstream nodes in the original model, and server Sd( j ) represents server Sj and
its downstream nodes in the original model. Figure 3 shows how the original model of
figure 1 is decomposed into subsystems.

Figure 2. The equivalent open loss model.
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2.3. Characterization and analysis of subsystems

In this paper, we characterize the upstream and downstream servers at each sub-
system by exponential distributions. Let the service rates of Sui( j ) and Sd( j ) be µui( j )
and µd( j ), respectively. If the values of µui( j ), i = 1,…,Nj , and µd( j ) are given, we can
analyze subsystem T( j ) exactly by the procedure developed in Lee and Pollock [11].
To analyze subsystem T( j ) (see figure 4), we define the state of T( j ) to be the number

Figure 3. Decomposition of the model into subsystems.

Figure 4. Subsystem T( j ).
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of customers in B( j ) plus the ones being blocked by Sd( j ) if Sd( j ) is blocking. Thus,
Cj + n represents the state that n upstream servers are being blocked by Sd( j ).

Let

P(n: j ) = steady state probability that T( j ) is in state n, n = 0,…,Cj + Nj ,

bui(n: j ) = probability that n servers are blocked by Sd( j ) including Sui( j ), n = 1,…,Nj ,

bui( j ) = probability that Sui ( j ) is blocked by Sd( j ),

Ps( j ) = probability that Sd( j ) is starved at the service completion instant,

Pbi(n: j ) = probability that at the service completion instant, the server Sui ( j ) sees n
other servers being blocked by Sd( j ), n = 0,…,Nj – 1.

Then, from the results in Lee and Pollock [11], the steady-state probability P(n: j )
can be obtained by solving the birth and death process shown in figure 5 or figure 6.
Figure 5 represents the state-transition-rate diagram when the service mechanism at
Su1( j ) is blocking-after-service, while figure 6 represents the state-transition-rate
diagram when the service mechanism at Su1( j ) is repetitive-service blocking.

Figure 5. State-transition-rate diagram when the service mechanism
at Su1( j ) is blocking-after-service.

Figure 6. State-transition-rate diagram when the service mechanism
at Su1( j) is repetitive blocking.

Once the steady-state probabilities are obtained, the blocking probabilities can
be computed by again using the results in Lee and Pollock as follows:

b n j
j

P C n j n Nui
ui n

i

n
j j( : )

( )
( : ),    , , , ( )= + = …−µ Ω

Ω
1 1 2 1
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where
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µ ( ),L ik ∈{1, 2,…, i – 1, i + 1,…,Nj} in the case of

blocking-after-service at Su1( j ) and ik ∈{2, 3,…, i – 1 , i + 1,…,Nj}  in the case of
repetitive-service blocking at Su1( j ).

The steady-state probability that server Sui( j ) is blocked by server Sd( j ) can now
be computed as

b j b n jui ui
n

N j

( ) ( : ). ( )=
=

∑
1

2

Finally, the starvation probabilities and the blocking probabilities at the service
completion epochs are given by (for details, refer to Lee et al. [10])

(3)

(4)

2.4. Decomposition equations

In section 2.3, we analyzed the subsystem assuming that the parameter values
are known. These parameter values, however, are not known but should be determined.
Notice that the unknown parameters are the set of service rates µui( j ), i = 1, 2,…,Nj ,
j = 1, 2,…,M and µd( j ),  j = 1, 2,…,M. As a result, we have a total of M + ∑M

j =1Nj

unknowns. To determine these unknowns, we need a set of M + ∑M
j =1Nj independent

equations. First consider the saturated server S0j and exit server Sk in the original
model. Since S0j has no upstream nodes in the original model, server Su1( j ) in sub-
system T( j ) represents S0j in the original model. Similarly, since Sk has no downstream
nodes in the original model, server Sd(k) in subsystem T(k) represents Sk in the original
model. Consequently, we have µu1( j ) = µ0j , µd(k) = µk for these servers. Therefore,
we have as many boundary conditions as the number of saturated servers and exit
servers in the original model.

We now derive three different sets of equations that can be used to determine the
remaining set of unknowns. In deriving the sets of equations to determine the unknown
parameters, we do not consider the effect of a deadlock because consideration of it
will make the model too complicated to solve the networks in a general case. There-
fore, sets of equations are derived under the conditions as if there is no deadlock. One
set of equations is related to the service processes of the downstream servers Sd( j ).
Since the server Sd( j ) represents the part of the original model downstream of buffer
B( j ), the service time of Sd( j ) corresponds to the time between the beginning of a
service at Sj and the transfer of the customer into one of the downstream buffers. This
time is composed of a service time of server Sj and, possibly, a blocking time. Blocking
occurs if the destination buffer is full at the service completion instant at Sj . Note that
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a blocking of server Sj by Sm is represented by a blocking of server Suk(m) by Sd(m) in
subsystem T(m), where f (k, m) = j. Hence, the probability that at the service comple-
tion instant at Sj  a customer whose destination is node m sees n other customers being
blocked by Sm, is approximated by Pbk(n:m), where f (k, m) = j. Therefore, the mean
service time of Sd( j ) is given by

1 1
1

1
5

0

1

µ µ µd j
jm bk

dn

N

m D
j

r P n m n
m

j

j
( )

( : ) ( )
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=

−

∈
∑∑

where f (k, m) = j for each non-exit server Sj .
A similar set of equations is related to the service processes of the upstream

servers Sui( j ). Since serverSui ( j ) represents the server Sf (i, j) and its upstream part in
the original model, the service time of Sui ( j ) corresponds to the time between the
transfer of a customer from server Sf (i, j) into buffer Bj and the service completion of
the next customer with destination Sj at Sf (i, j). Let  f (i, j) = k. Then, we can approximate
the mean time between the transfer of a customer from server Sk into buffer Bj and the
next service completion at Sk by

P k
k

s
k

( )
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,
*

1 1

µ µ
+

where µ µ*( ) ( ).k kuii
Nk= ∑ = 1 Therefore, if the destination of the next customer is node

j, this becomes the mean service time of Sui ( j ). On the other hand, if the destina-
tion of the next customer is not node j, say node m, then an additional time of

P n mbln
Nm ( : )=

−∑ 0
1 (n + 1)yµd(m) on average is required to clear this customer from

server Sk after completion of its service, where f (l, m) = k. Due to the Markov routing,
the mean time from the clearance of this customer until the service completion of the
next customer with destination Sj is again 1yµui ( j ). Thus, we can express 1yµui ( j ) as
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where f (i, j) = k, f (l, m) = k.
Solving equation (6) in terms of 1yµui( j ), we have
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where f (i, j) = k.
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Finally, a third set of equations is related to the conservation of flow. Let Xd(i )
be the throughput of Sd(i ) (or T(i )) and Xui( j ) be the throughput of Sui ( j ). Then, the
following relationships should hold between the throughput of two subsystems to
satisfy the conservation of flow:

X j X k rui d k j( ) ( ) , ( )= 8

where f (i, j) = k, for i = 1, 2,…,Nj ,  j = 1, 2,…,M.
We have obtained three sets of equations. However, it can be easily checked that

the number of equations in any two sets of equations is the same as the number of
unknown parameters. Therefore, to determine the unknown parameters, we only need
two sets of equations. Let SE1 be a system of equations consisting of equations (5)
and (8). Let SE2 be a system of equations consisting of equations (7) and (8). Similarly,
let SE3 be a system of equations consisting of equations (5) and (7). Since we can
choose any system of equations among SE1, SE2, and SE3 to determine the unknown
parameters, three different types of algorithms can be devised. As Dallery and Frein
proved for the tandem configuration [2], we can prove that the following lemma holds
for the arbitrary configuration.

Lemma 1. Any solution of SE3 satisfies the conservation of flow equation (8).

Proof. Note that throughputs Xd(k) and Xui ( j ) can be expressed, respectively, as:

                                                                  , (9)

(10)

From equation (10) together with equations (7) and (9), we have
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Lemma 1 implies that any solution of SE3 will satisfy (8). The proof of lemma 1
can be reversed to show that (5) and (8) imply (7), and similarly (7) and (8) imply (5).
As a result, we have the following corollary.
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Corollary 1 . The  three systems of equations SE1, SE2, SE3 are equivalent.

Corollary 1 indicates that different algorithms based on different systems of
equations yield the same results if subsystems are characterized and solved in the
same way. The previous algorithms such as those of Altiok and Perros [1], Perros and
Snyder [14], Jun and Perros [4], and Lee and Pollock [11] are all developed based on
SE1. The algorithm we develop in this paper is based on SE3. As will be shown later,
the algorithm based on SE3 has several advantages over the algorithms based on SE1
or SE2, in addition to offering a symmetrical view of decomposition.

2.5. The computational algorithm

This section describes an algorithm to solve the system of equations, SE3. Our
algorithm is an iterative algorithm with a single loop. Since the network is linked in
an arbitrary configuration, each subsystem can be analyzed in any order within a loop.
For convenience, we analyze subsystems T( j ) in the order j = 1,…,M. Within each
loop, to analyze subsystem T( j ), we first calculate the service rate of the downstream
server, µd( j ), using equation (5). To do this, we need the values of Pbk(n:m) for all
m ∈Dj , where f (k, m) = j. We use the values of Pbk(n:m) which have been obtained
most recently. That is, if subsystem T(m) has already been analyzed in this loop, we
use the values updated in this loop. On the other hand, if subsystem T(m) has not been
analyzed in this loop, we use the values updated in the previous loop. Once µd( j ) is
updated, using the values of µui ( j ) which have been updated most recently, we analyze
subsystem T( j ) using the procedure presented in section 2.3. Then we calculate Ps( j )
and Pbi(n: j ) using equations (3) and (4), respectively. After these probabilities are
obtained, we calculate new values of µui(k) for all k ∈Dj , where f (i, k) = j, using
equation (7). In each iteration step of the algorithm, some computational effort can be
saved because some parameter values do not have to be calculated for the following
cases: (i) Ps( j ) if Sj is an exit server, (ii) µu1( j ) if the first upstream server linked to Bj

is a saturated server, (iii) µd( j ) if Sj is an exit server, (iv) Pbi(n: j ) if a saturated server
is the only upstream server linked to Bj . The algorithm continues until the upstream
and downstream service rates become close enough between two successive itera-
tions. The initial values of the parameters µd( j ), µui( j ) and Pbi(n: j ) are obtained by
assuming that neither blocking nor starvation exist. This algorithm, which we will
call algorithm 1 in this paper, is summarized as follows:

Algorithm 1

Initialization:

Set µd( j ) = µj, j = 1,…,M
µui( j ) = µk ∗ r kj , where f (i, j) = k, for i = 1,…,Nj , j = 1,...,M
Pbi(n: j ) = 0, for i = 1,…,Nj , j = 1,...,M
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Iteration step:

For j =1, 2,…,M do:
1. Calculate µd( j ) using (5).
2. Calculate Ps( j ) using (3).
3. Calculate Pbi(n: j ) using (4), n = 0, 1,…,Nj – 1, i = 1, 2,…,Nj .
4. Calculate µui(k) using (7), for all k ∈Dj, where f (i,k) = j.

Convergence step:

If convergence condition is satisfied, stop.
Otherwise, go to the iteration step.

This algorithm, in general, solves SE3 very quickly. In addition, algorithm 1
always converged in all the problems we have tested to date. However, for the networks
with no feedback loop, we can devise a more efficient algorithm, which we will call
algorithm 2 in this paper. In algorithm 2, each loop consists of a forward pass (step 1)
and a backward pass (step 2). The forward pass calculates new values of the service
rates of the upstream servers µui ( j ) as well as the starvation probabilities Ps( j ). The
backward pass calculates new values of the service rates of the downstream servers
µd( j ) as well as the blocking probabilities Pbi(n : j ). The initialization is done in the
same way as in algorithm 1.

Algorithm 2

Initialization:

Set µd( j ) = µj, j = 1,…,M
µui( j ) = µk ∗ r kj , where f (i, j) = k, for i = 1,…,Nj , j = 1,...,M
Pbi(n: j ) = 0, for i = 1,…,Nj , j = 1,...,M

Iteration step:

Step 1: For j = 1, 2,…,M do:

1.1. Calculate Ps( j) using (3).
1.2. Calculate µui(k) using (7) for all k ∈Dj , where f (i, k) = j.

Step 2: j = M,…,2, 1 do:

2.1. Calculate µd( j ) using (5).
2.2. Calculate Pbi(n: j ) using (4), n = 0,1,...,Nj – 1, i = 1, 2,...,Nj.

Step 3: If convergence condition is satisfied, stop.
Otherwise, go to step 1.

Since both algorithm 1 and algorithm 2 solve the same system of equations, they
always yield the same results. However, the speeds of these two algorithms are dif-
ferent. In most of the test problems of the acyclic networks, algorithm 2 was observed
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to converge faster than algorithm 1. For the test problems of the networks with very
few feedback loops, the speeds of these two algorithms were observed to be almost
comparable. However, for the networks with many feedback loops, it was observed
that algorithm 1 usually converged faster than algorithm 2. Through numerical experi-
ments, it was also found that algorithm 2 did not converge in some large-size network
problems with many feedback loops, although it converged in all the acyclic network
problems tested to date. For this reason, we recommend that algorithm 1 be used for
the networks with feedback loops, while algorithm 2 be used for the networks without
feedback loops. We have not been able to prove the convergence of the algorithm in
the general case. In the case of a merge configuration, however, as will be shown in
section 4, we did prove the convergence of algorithm 2 as well as the existence and
uniqueness of the solution by exploiting the properties pertaining to the system of
equations, SE3.

3. Computational results

In order to test the accuracy and the speed of the approximation method, both
algorithm 1 and algorithm 2 were implemented on an IBM PC 586 and tested on a
variety of problems. The results of the approximation method were compared with
those of  simulation. Each simulation was run until at least 300,000 customers departed
from the system. If the network has no feedback loop and the blocking mechanism at
the saturated servers is repetitive-service blocking, our algorithm yields the same
results as the algorithm of Lee and Pollock [11] because decomposition into sub-
systems, characterization of the subsystem and analysis of the subsystem are done in
the same way in these algorithms. In order to compare the speed of algorithm 2 to that
of Lee and Pollock’s algorithm, we have tested both algorithms on the set of problems
presented in Lee and Pollock. From the results of the experiments, we have observed
that the number of iterations needed for convergence by algorithm 2 is always less
than or equal to that needed for convergence by Lee and Pollock’s algorithm. As a
result, algorithm 2 takes less CPU time than the previous algorithm using the same
convergence criterion. The CPU execution time as well as the number of iterations
was observed to be reduced by about 15% on average in algorithm 2 compared with
that in Lee and Pollock’s algorithm. The maximum number of iterations needed for
convergence was eight in algorithm 2, while it was ten in Lee and Pollock’s algorithm
on the set of  problems presented in Lee and Pollock [11].

We have also tested our algorithm for the networks with feedback loops. The
results are summarized in tables 1 to 4 for the various performance measures. In each
table, the probability that there are n customers at node i is denoted by Pi (n) and the
mean queue length at node i is denoted by Li . Table 1 gives results for the three-node
network in figure 7 and table 2 gives results for the four-node network in figure 8.
Table 3 gives results for the eight-node network in figure 9. The blocking mechanism
at the saturated servers is assumed to be repetitive-service blocking for the networks
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Figure 7. The three-node network.

Table 1

Comparisons with simulation for the three-node networks with feedback loops.

Case Measures Simulation Approx. Rel. error (%)

C = (2, 2, 2), µ = (1, 1, 1) P1(0) 0.206 0.210 1.94
P1(2) 0.458 0.483 5.46
L1 1.252 1.273 1.68
P2(0) 0.265 0.287 8.30
P2(2) 0.450 0.452 0.44
L2 1.185 1.166 – 1.60
P3(0) 0.376 0.389 3.46
P3(2) 0.334 0.335 0.30
L3 0.959 0.946 – 1.36

C = (1, 1, 1), µ = (1.5, 1.5, 1.5) P1(0) 0.510 0.478 – 6.27
P1(1) 0.490 0.522 6.53
L1 0.490 0.522 6.53
P2(0) 0.526 0.532 1.14
P2(1) 0.474 0.468 – 1.27
L2 0.474 0.468 – 1.27
P3(0) 0.610 0.620 1.64
P3(1) 0.390 0.380 – 2.56
L3 0.390 0.380 – 2.56

C = (3, 3, 3), µ = (1.5, 1.5, 1.5) P1(0) 0.312 0.311 – 0.32
P1(3) 0.191 0.202 5.76
L1 1.300 1.317 1.31
P2(0) 0.332 0.338 1.81
P2(3) 0.222 0.232 4.50
L2 1.301 1.307 0.46
P3(0) 0.391 0.396 1.28
P3(3) 0.175 0.179 2.29
L3 1.128 1.130 0.18

C = (2, 2, 2), µ = (2, 2, 2) P1(0) 0.489 0.481 – 1.64
P1(2) 0.195 0.210 7.69
L1 0.706 0.729 3.26
P2(0) 0.498 0.501 0.60
P2(2) 0.213 0.228 7.04
L2 0.715 0.727 1.68
P3(0) 0.547 0.550 0.55
P3(2) 0.180 0.186 3.33
L3 0.634 0.636 0.32
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Table 2

Comparisons with simulation for the four-node networks with feedback loops.

Case Measures Simulation Approx. Rel. error (%)

C = (1, 1, 1, 1), µ = (1.0, 0.5, 0.5, 1.0) P1(0) 0.364 0.338 – 7.14
P1(1) 0.636 0.662 4.09
L1 0.636 0.662 4.09
P2(0) 0.490 0.477 – 2.65
P2(1) 0.510 0.523 2.55
L2 0.510 0.523 2.55
P3(0) 0.389 0.394 1.29
P3(1) 0.611 0.606 – 0.82
L3 0.611 0.606 – 0.82
P4(0) 0.589 0.589 0.00
P4(1) 0.411 0.411 0.00
L4 0.411 0.411 0.00

C = (2, 2, 2, 2), µ = (1.5, 0.8, 0.8, 1.5) P1(0) 0.367 0.351 – 4.36
P1(2) 0.311 0.323 3.86
L1 0.945 0.972 2.86
P2(0) 0.516 0.509 – 1.36
P2(2) 0.186 0.203 9.14
L2 0.670 0.693 3.43
P3(0) 0.363 0.366 0.83
P3(2) 0.342 0.352 2.92
L3 0.980 0.986 0.61
P4(0) 0.523 0.523 0.00
P4(2) 0.210 0.216 2.86
L4 0.688 0.693 0.73

C = (2, 2, 2, 2), µ = (2.0, 1.0, 1.0, 2.0) P1(0) 0.482 0.471 – 2.28
P1(2) 0.213 0.217 1.88
L1 0.731 0.746 2.05
P2(0) 0.595 0.589 – 1.01
P2(2) 0.134 0.145 8.21
L2 0.538 0.557 3.53
P3(0) 0.445 0.445 0.00
P3(2) 0.263 0.273 3.80
L3 0.818 0.828 1.22
P4(0) 0.599 0.600 0.17
P4(2) 0.149 0.154 3.36
L4 0.550 0.554 0.73

Figure 8. The four-node network.
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in figures 7 and 8, while it is assumed to be blocking-after-service for the network in
figure 9. Since all these problems have feedback loops, deadlocks occur in these
problems. The frequency of deadlocks, however, is not very high, although significant.

Figure 9. The eight-node network.

Table 3

Comparisons with simulation for the eight-node networks with feedback loops.

C = (2, 2, 2, 2, 2, 2, 2, 2) C = (2, 2, 2, 2, 2, 2, 2, 2)
µ = (1.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.5) µ = (2.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.0)

Measures Simulation Approx. Rel. error (%) Measures Simulation Approx. Rel. error (%)

P1(0) 0.220 0.221 0.45 P1(0) 0.417 0.421 0.96
P1(2) 0.547 0.539 – 1.46 P1(2) 0.311 0.302 – 2.89
L1 1.317 1.318 0.08 L1 0.895 0.881 – 1.56
P2(0) 0.434 0.426 – 1.84 P2(0) 0.614 0.616 0.33
P2(2) 0.306 0.309 0.98 P2(2) 0.145 0.142 – 2.07
L2 0.872 0.882 1.15 L2 0.531 0.527 – 0.75
P3(0) 0.415 0.406 – 2.17 P3(0) 0.599 0.600 0.17
P3(2) 0.315 0.318 0.95 P3(2) 0.153 0.149 – 2.61
L3 0.900 0.912 1.33 L3 0.554 0.550 – 0.72
P4(0) 0.377 0.373 – 1.06 P4(0) 0.549 0.552 0.55
P4(2) 0.348 0.352 1.15 P4(2) 0.187 0.185 – 1.07
L4 0.971 0.979 0.82 L4 0.639 0.634 – 0.78
P5(0) 0.434 0.426 – 1.84 P5(0) 0.613 0.616 0.49
P5(2) 0.305 0.309 1.31 P5(2) 0.145 0.142 – 2.07
L5 0.871 0.882 1.26 L5 0.532 0.527 – 0.94
P6(0) 0.416 0.406 – 2.40 P6(0) 0.598 0.600 – 0.33
P6(2) 0.315 0.318 0.95 P6(2) 0.154 0.149 – 3.25
L6 0.898 0.912 1.56 L6 0.556 0.550 – 1.08
P7(0) 0.376 0.373 – 0.80 P7(0) 0.547 0.552 0.91
P7(2) 0.363 0.352 – 3.03 P7(2) 0.189 0.185 – 2.12
L7 0.972 0.979 0.72 L7 0.643 0.634 – 1.40
P8(0) 0.280 0.274 – 2.14 P8(0) 0.368 0.364 – 1.09
P8(2) 0.492 0.492 0.00 P8(2) 0.380 0.380 0.00
L8 1.212 1.217 0.41 L8 1.012 1.015 0.30
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The number of deadlocks which have been observed during simulation until 300,000
customers departed from the system ranges between 530 and 8,300.

As shown in tables 1 through 3, the new algorithm yields very good results.
Most of the estimated values for the occupancy probabilities have a relative error less
than 5%. However, for systems with frequent deadlocks, the results obtained by our
algorithm are not as good because the algorithm does not take the effect of a dead-
lock into account in determining the unknown parameters. The three-node network in
figure 10, which was taken from the paper of Jun and Perros [4], represents the case

Figure 10. The three-node network in which deadlocks occur frequently.

in which deadlocks occur very frequently. In these problems, the number of deadlocks
which have been observed during simulation until 300,000 customers departed from
the system ranges between 11,700 and 40,000. Table 4 gives the results for these test
problems. Table 4 shows that the new algorithm always overestimates the congestion
measures of the system such as the mean queue length or the probability that the queue
length is full. This is due to the fact that the new algorithm overestimates the delay
time caused by blocking because it does not consider the effect of the deadlock resolu-
tion mechanism in which blocked customers get unblocked as soon as a deadlock
occurs. As shown in table 4, some of the estimated values for the occupancy prob-
abilities have a relative error larger than 20%. These results appear to be not as good
as those of Jun and Perros’ algorithm, in which most of the estimated values have a
relative error less than 5%. However, the algorithm of Jun and Perros is very compli-
cated. In addition, it has the restriction that it cannot solve the network if there is any
node in the network that has more than two non-saturated upstream servers directly
linked to it. For instance, the algorithm of Jun and Perros cannot solve the networks
in figures 8 and 9 because node 4 (node 8) in figure 8 (figure 9) has three non-saturated
upstream servers directly linked to it. Therefore, we believe that, from a practical
point of view, the new algorithm is useful even for the networks in which deadlocks
occur frequently although the results are not as good. The maximum number of itera-
tions needed for convergence for the problems presented in this paper was 14 when
we use algorithm 1. But in most cases, convergence occurred within 10 iterations (for
a precision of 10–6). The maximum CPU time was 0.06 seconds on an IBM PC-586.
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Table 4

Comparisons with Jun and Perros for the three-node networks in which deadlocks occur frequently.

Case Measures Simulation Jun and Perros Approx. Rel. error (%)

C = (3, 3, 3) P1(0) 0.194 0.202 0.184 – 5.15

µ0 = (1.5, 2.0, 1.8) P1(3) 0.367 0.366 0.393 7.08

µ = (3.0, 4.0, 3.5) L1 1.768 1.750 1.823 3.11

r 10 = 0.5, r12 = 0.3, r13 = 0.2, P2(0) 0.242 0.247 0.224 – 7.44

r 20 = 0.5, r21 = 0.2, r23 = 0.3, P2(3) 0.296 0.303 0.326 10.14

r 30 = 0.5, r31 = 0.3, r32 = 0.2 L2 1.578 1.577 1.654 4.82

P3(0) 0.204 0.217 0.196 – 3.92

P3(3) 0.344 0.343 0.368 6.98

L3 1.717 1.691 1.766 2.85

C = (2, 2, 2) P1(0) 0.317 0.324 0.260 – 17.98

µ0 = (2.0, 1.0, 1.5) P1(2) 0.378 0.391 0.452 19.58

µ = (5.0, 4.0, 3.0) L1 1.062 1.066 1.192 12.24

r 10 = 0.4, r12 = 0.2, r13 = 0.4, P2(0) 0.326 0.336 0.277 15.03

r 20 = 0.2, r21 = 0.3, r23 = 0.5, P2(2) 0.362 0.381 0.450 24.31

r 30 = 0.5, r31 = 0.2, r32 = 0.3 L2 1.035 1.046 1.173 13.30

P3(0) 0.153 0.166 0.124 – 18.95

P3(2) 0.622 0.612 0.685 10.13

L3 1.470 1.447 1.561 6.19

C = (2, 2, 2) P1(0) 0.205 0.213 0.177 – 13.70

µ0 = (3.0, 1.0, 2.0) P1(2) 0.514 0.517 0.561 9.14

µ = (4.0, 3.0, 2.0) L1 1.309 1.304 1.384 5.73

r 10 = 0.5, r12 = 0.4, r13 = 0.1, P2(0) 0.254 0.262 0.232 – 8.66

r 20 = 0.6, r21 = 0.3, r23 = 0.1, P2(2) 0.470 0.474 0.513 9.15

r 30 = 0.4, r31 = 0.3, r32 = 0.3 L2 1.216 1.212 1.281 5.67

P3(0) 0.178 0.189 0.171 – 3.93

P3(2) 0.532 0.526 0.559 5.08

L3 1.354 1.337 1.388 2.51

C = (2, 3, 3) P1(0) 0.161 0.172 0.132 – 18.01

µ0 = (2.0, 1.0, 1.0) P1(2) 0.589 0.584 0.643 9.17

µ = (2.5, 2.0, 1.5) L1 1.429 1.412 1.511 5.74

r 10 = 0.5, r12 = 0.3, r13 = 0.2, P2(0) 0.161 0.175 0.140 – 13.04

r 20 = 0.5, r21 = 0.3, r23 = 0.2, P2(3) 0.400 0.407 0.462 15.50

r 30 = 0.4, r31 = 0.4, r32 = 0.2 L2 1.876 1.861 2.006 6.93

P3(0) 0.113 0.125 0.101 – 10.62

P3(3) 0.481 0.480 0.537 11.64

L3 2.089 2.061 2.188 4.74
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4. Properties of algorithm 2 for the merge configuration

In the case of a merge configuration, we can develop some theoretical results such
as the convergence of the algorithm as well as the existence and uniqueness of the
solution. In this section, we present these results. The merge configuration we consider
consists of K saturated servers and K + 1 non-saturated servers, as shown in figure 11.

To analyze this network, we decompose the network into K + 1 subsystems, T(i),
i = 1,…,K + 1, as  shown in figure 12.

In the merge configuration, the upstream server, Su(i), in subsystem T(i) repre-
sents S0i , i = 1,…,K, and the downstream server, Sd(K + 1), in subsystem T(K + 1)
represents SK +1 in the original model. Therefore, we have µu(i) = µ0i , i = 1,…,K, and
µd(K + 1) = µK+1. Using these facts, the sets of equations (5) and (7) which determine
the service rates of the upstream and downstream servers in each subsystem can be
simplified to:

Figure 11. Merge configuration.

Figure 12. Decomposition of the network into subsystems.
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As a result, we have the following simple version of algorithm 2, which we will call
algorithm 2(M).

Algorithm 2(M)

Initialization:

Set µu(i) = µ0i , i = 1,…,K, µd(i) = µi , i = 1,…,K + 1.

Iteration step:

Step 1: For i = 1, 2,…,K do:

1.1. Calculate PS(i) using (3).
1.2. Calculate µui (K + 1) using (12).

Step 2:
2.1. Calculate Pbi(n : K + 1) using (4), n = 0, 1,…,K – 1, i = 1, 2,…,K.
2.2. Calculate µd(i) using (11), i = 1, 2,…,K.

Step 3: If convergence condition is satisfied, stop.
Otherwise, go to step 1.

To prove the theoretical results pertaining to this algorithm, we need to develop
some properties associated with each subsystem. We give three of these properties
below. Since the proofs of these properties  are very long and somewhat involved, we
do not provide them in this paper for the sake of conciseness. The proof of property 1
is given in Dallery and Frein [2] and the proofs of properties 2 and 3 can be found in
Lee et al. [10].

Property 1. Let µ µu di i1 1( ), ( ) and µ µu di i2 2( ), ( ) be two sets of parameters to subsystem
T(i), 1 ≤ i ≤ K. Supposeµ µu ui i1 2( ) ( ).= Then the following relationship holds:
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Property 3. Consider the following two sets of parameters pertaining to subsystem
T(K + 1):

If then andµ µd d s s d di i P i P i X i X i2 1 2 1 2 1( ) ( )     ( ) ( )     ( ) ( ).≤ ≤ ≤
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Supposeµ µd dK K1 21 1( ) ( ).+ = + Define sets A, B and C such that

where S= {1, 2,…,K}. Then the following relationships hold:

We are now ready to provide the proofs for the existence and uniqueness of the
solution as well as the convergence of the algorithm. The general procedure of the
proofs is the same as the one in Dallery and Frein [2] for the tandem configuration.
The following property, stated as theorem 1, answers the question of uniqueness of
the solution provided that the existence is guaranteed.

Theorem 1. The system of equations SE3 has at most one solution.

Proof. We assume that SE3 has two different solutions and show that this leads to a
contradiction. All the quantities that pertain to the first solution (respectively, the
second solution) will be denoted by a superscript 1 (respectively, 2). Letµd

j i( ) and
µui

j K( )+ 1 , for i = 1,…,K, j = 1, 2, be the two solutions. Define sets A, B and C such
that

where S= {1, 2,…,K}. Then from property 1, it follows for each subsystem T(i) for
i ∈A, that

Applying this result to (12), we obtain
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Similarly, for each subsystem, T(i) for i ∈B, we have

(14)

Inequalities (13) and (14) imply that

These inequalities, however, are a contradiction to property 3. u

We now provide the proof of the convergence of algorithm 2(M).

Theorem 2. Algorithm 2(M) always converges to a solution of system SE3.

Proof. It is easy to check that algorithm 2 (therefore, algorithm 2(M)) is nothing but
the method of Gauss–Seidel applied to the system of fixed point type equations. The
aim of the algorithm is to solve system SE3 and therefore to obtain values for the
unknown parameters µui(K + 1) and µd(i), for i = 1,…,K. It consists of an initialization
step followed by an iteration step. During each iteration, new values of Ps(i), µui(K + 1)
Pbi(n: K + 1) and µd(i) are obtained. Let n denote the index of the iteration. Let Pn

s (i),
µui

n
bi
nK P n k( ), ( : )+ +1 1 and µd

n i( ) denote the parameters obtained during the nth
iteration. Letµd i0( ), i = 1,…,K denote the initial value of the service rate of Sd(i) given
by µ µd ii0( ) ,= i = 1,…,K.
During the nth iteration, steps 1 and 2 are successively executed. In step 1, subsystems
T(i), i = 1,…,K, are successively analyzed. The parameters of subsystem T(i) are
then µui

n K( )+ 1 and µd
n i−1( ). Similarly, in step 2, subsystems T(i), for i = K,…,1, are

successively analyzed. The parameters of subsystem T(i) are thenµui
n K( )+ 1  and

µd
n i( ). Note that we haveµ µu

n
ii( ) = , i = 1,…,K, and µ µd

n
KK( )+ = +1 1 for any n.

Part 1. In the first part of the proof, we show that for any two successive iterations n
and n + 1, we have

(15)
and

(16)

Part a. Consider step 1 of the algorithm. Let us show that

(17)
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∈∈∈∈
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µ µd
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d
ni i i K+ ≤ = …1 1( ) ( )   , , .for 

If for then
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µ µ
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i i i K

K K i K

( ) ( )  , , ,   

( ) ( ) , , .
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−

+

1

1
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1 1 1
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Consider subsystem T(i). From property 1, we obtainP i P is
n

s
n+ ≤1( ) ( ) for i = 1,...,K.

Now from (12), we getµ µui
n

ui
nK K+ + ≥ +1 1 1( ) ( ). Then by induction on i, we obtain

(17).

Part b. Consider step 2 of the algorithm. Let us show that

(18)

From property 2, we obtain

P j K j P j K jbk
n

K
bk
n

Kj

K

j

K
+

+ +=

−

=

−

+ + ≥ + +∑∑ 1

1 10

1

0

1

1 1
1

1 1
1

( : ) ( ) ( : ) ( ) .
µ µ

Now from (11), we getµ µd
n

d
ni i+ ≤1( ) ( ) for i = 1,…,K. Then by induction on i, we

obtain (18).

Part c. From (17) and (18), we get the implication

(19)

From (11), it follows that

Then (15) and (16) follow from (19) and (20).

Part 2. Equation (15) states that each series{ ( ), , , }µui
n K n+ = …1 1 2 for i = 1,…,K

is non-decreasing. Moreover, from (12), it follows thatµ µui
n

iK( ) .+ ≤1 Therefore,
as each series is non-decreasing and upper bounded, it converges. Similarly, equa-
tion (16) states that each series{ ( ), , , }µd

n i n = …1 2 for i = 1,…,K  is non-increasing.
Moreover, from (11) it follows that

µ
µ µ

µ µd
n i K

K i
i

K
( ) .≥

+
+

+

1

1

This bound is obtained by considering the case whereP K Kbi
n( : ) .− + =1 1 1  There-

fore, as each series is non-increasing and lower bounded, it converges. Now, since the
algorithm is the application of the method of Gauss– Seidel to solve the system of
equations SE3, the asymptotic values ofµ µd

n
ui
ni K( ), ( ),+ 1 i = 1, 2,…,K, are indeed

a solution of SE3. u

We know from theorem 2 that SE3 has at least one solution. Furthermore, from
theorem 1, we know that SE3 cannot have two or more solutions. Therefore, we have
the following property, stated as corollary 2.
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Corollary 2 . The solution of the system of equations SE3 exists and is unique.

From corollary 1, the three systems of equations are equivalent. Thus, the solution
of the system of equations SE1 (and SE2) also exists and is unique.

5. Conclusions
We have presented a new approximate algorithm for analyzing an arbitrary con-

figuration of open queueing networks with finite buffers. The approximate technique
decomposes the network into a set of subsystems. Each subsystem is composed of
one or many upstream servers and one downstream server separated by a finite buffer.
The new algorithm is based on the symmetrical approach and offers a symmetrical
representation of the decomposition method. The new algorithm is quite simple
because service times at each subsystem are characterized by exponential distributions.
The new algorithm is also very general in that it can analyze all the classes of models
considered by the previous studies under blocking-after-service mechanism. For the
class of models considered by Lee and Pollock [11], the new algorithm yields the
same results as that of Lee and Pollock. The numerical results, however, have shown
that the new algorithm takes less CPU execution time than the one proposed by Lee
and Pollock. As reported in Lee and Pollock [11], the new algorithm yields very
accurate results for the cases of networks without feedback loops. For the cases of
networks with feedback loops, the numerical results have shown that the new algorithm
usually converges fast and yields good results unless deadlocks occur too frequently.
In particular, for the merge configuration, we could prove the convergence of the
algorithm as well as the existence and uniqueness of the solution, which to the best of
our knowledge has never been done previously. This new algorithm holds promise as
a useful tool in the analysis of arbitrary configuration of open queueing networks
with finite buffers.
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