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APPROXIMATION ANALYSIS OF OPEN ACYCLIC EXPONENTIAL
QUEUEING NETWORKS WITH BLOCKING

HYO-SEONG LEE

Kyung Hee University, Seoul, Korea

STEPHEN M. POLLOCK

University of Michigan, Ann Arbor, Michigan
(Received July 1987; revisions received April 1988, March 1989; accepted September 1989)

An arbitrary configuration of an open queueing network with exponential service times and finite buffers is analyzed.
We offer an iterative procedure for approximating the marginal occupancy probabilities for each queue of the system.
The method decomposes the queueing network into individual queues and analyzes each in isolation using information
from only its nearest neighbors. Based upon the SIMP approximation previously used for tandem queues, it replaces
each server’s service time with a clearance time, which includes blocking, and each server’s arrival rate by an equivalent
acceptance rate. The procedure is easy to implement and requires modest memory and computer time. Extensive
numerical experiments, performed for various topologies, yield accurate results compared with those obtained by exact

or simulation methods.

A queueing network, a set of arbitrarily connected
queues, can represent many processes of interest
in manufacturing systems, computer systems, tele-
communications, etc. If the buffer space between serv-
ers is infinite and service times at each queue are
exponential, these networks can be analyzed exactly
by Jackson’s decomposition method (see Jackson
1963). Jackson’s method, however, ignores an impor-
tant feature of many real queueing systems, i.e., block-
ing due to the finiteness of buffer space. In this case,
the product form property does not hold, and very
complicated conditions of dependency exist among
the queues. The number of states needed for an exact
numerical analysis grows combinatorially with the
number of queues and buffers. For this reason, most
analyses are based on approximation or simulation
methods.

There are various configurations of queueing net-
works with blocking. The tandem (or serial) network
with exponential servers, the most basic structural
configuration, has been studied by Hillier and Boling
(1967), Caseau and Pujolle (1979), Latouche and
Neuts (1980), Boxma and Konheim (1981), Altiok
(1982), Perros and Altiok (1986), Bocharov and
Rokhas (1980), Brandwajn and Jow (1985) and
Foster and Perros (1980). For nonexponential service
times, Gershwin (1987) and Choong and Gershwin
(1987) present algorithms for special service time dis-

tributions, representing the probabilistic failure and
repair of the server. The SIMP approximation proce-
dure of Pollock, Birge and Alden (1985) allows for
general service time distributions.

Analysis of other configurations, particularly split
and merge, have been reported by Boxma and
Konheim (1981), Altiok and Perros (1986) and Lee
and Pollock (1989). With the exception of allowing
some servers to have general service time distributions
in Lee and Pollock, these all assume exponential
service times.

The general system, which is a combination of
tandem, split and merge configurations, is the most
complicated to analyze. Takahashi, Miyahara and
Hasegawa (1980) assumed that effective service times
follow an exponential distribution, and developed a
set of simultaneous nonlinear equations that must be
solved to get performance measures. Labetoulle and
Pujolle (1980) and Kerbache and Smith (1986), allow-
ing for nonexponential service times, use a diffusion
approximation that may restrict its validity (see Perros
and Snyder 1986). Altiok and Perros (1987) use phase-
type distributions for approximately characterizing
effective service times. Their procedure appears to be
restricted to small networks due to the inherent com-
plexity of the phase-type mechanism. Recently, Perros
and Snyder developed a similar algorithm, using
a two-phase Coxian distribution to approximate
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effective service times, as an improvement over the
work by Altiok and Perros (1987). However, this
algorithm is not accurate in important boundary cases,
such as when queues that receive exogenous inputs
have very large buffers. In these previous analyses, as
with the work presented in this paper, the networks
are restricted to have no feedback loops.

In this paper, we present an approximation method
for analyzing the general configuration of an open
queueing network with blocking. This algorithm is
based on two earlier algorithms; one proposed by
Pollock, Birge and Alden for tandem queues and the
other by Lee and Pollock for merge queues. This new
algorithm solves large networks quickly, and yields
robust and accurate results.

1. DESCRIPTION OF THE NETWORK AND
FORMULATION OF THE PROBLEM

The network that we consider is identical to that in
Altiok and Perros (1987) and Perros and Snyder
except that we also allow external arrivals at any
server. It consists of the set {i: i =1, 2, ..., M} of
single server queues, connected arbitrarily via arcs
(i, j) with the restriction that there is no directed cycle.
This restriction is made to avoid feedback loops, with
which the approximation method would have diffi-
culty. Since there is no directed cycle, we can number
each queue in such a way that every arc (i, j) has i
less than j. The service time at queue i follows an
exponential distribution with rate u; and external
arrivals to queue  are independent Poisson processes
with rate A;. The capacity of the ith queue, including
the one in service, is N; and its buffer size is N; — 1.
Units at each queue are served in a FIFO manner. If
an external arrival encounters a queue [ when it is
full, the arrival is simply lost. A unit that has com-
pleted service at queue i chooses destination queue j
with routing probability 7;;. The probability that a
unit leaves the queueing system after completing serv-
ice at queue i is r;o. Figure 1 shows an example that
consists of four queues.

The blocking mechanism considered in this paper
is as follows. Suppose that a unit has just finished
service at queue 7 and the next service required is at
queue j. If the buffer of queue j is full, the unit cannot
leave the ith server. During this time the ith server
cannot serve other units that might be waiting in its
buffer: the ith server is said to be blocked and the jth
queue is blocking. For example, in Figure 1 queue |
cannot be blocking and queue 4 cannot be blocked.

Note that a queue may be simultaneously blocking
more than one upstream queue at one time. It is

A “3\ T30

Figure 1. The general four-node network.

assumed that the blocked units enter the destination
queue on a first blocked, first enter basis.

Since a unit blocked by queue j is ready to proceed
to queue j whenever there is a space in queue j, it is
effectively waiting in line to be served by server j.
Therefore, we can interpret the server position of a
blocked unit to be part of the buffer capacity of the
blocking queue. Hence, the capacity of queue j is
augmented by the number of upstream queues directly
connected to it, so that its effective capacity is N, + k.
In the next section, we develop a procedure that
exploits the augmented buffer size for each queue.

2. ANALYSIS OF THE MODEL

2.1. Approach and General Relationships

The approximation algorithm presented here pro-
duces the marginal steady-state occupancy probabili-
ties for each queue. To do this, we analyze each
individual queue in isolation using information only
from its nearest neighbors. This requires the consid-
eration of two parameters: 1) the clearance time, which
has two components: the actual service time plus a
term due to the occasional and probabilistic delay
caused by blocking; and 2) an effective interarrival
rate.
We first assume that:

a. Arrivals from queue i to queue j are Poisson with
effective rate A}, as long as the ith queue is not
blocked by queue j. When the ith queue is blocked
by queue j, there is no arrival from queue i to
queue J.

b. The clearance time (having two components) at
queue i is exponentially distributed with effective
rate u¥.

c. A unit at server i, at the instant service is com-
pleted, sees destination queues in the steady state.
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Clearly, these assumptions are far different from what
actually happens in the system.

2.2. Notation

We define, where, unless otherwise stated, the index i
always runs from 1 to M :

u; = the service rate at server i, excluding any
delay due to blocking,

T; = the clearance time for server i, that is, the
time between when a unit enters service in
queue i and when it leaves queue i,

F; = the predecessor set of queue i = {v: queue
v can pass units directly to queue i},

k;=|F;| = the number of upstream queues
directly connected to queue i,

B; = the successor set of queue i = {v: queue v
can receive units directly from queue i},

X\, =the flow rate from queue i/ to queue
i=1,...,M—1,j€ B,

oi (Xio) = the flow rate from outside the system to
queue / (from queue i to outside the
system),

A} = the arrival rate to queue j from queue i/ as
long as queue / is not blocked by queue j,
i=1,...,M—1,j€B,,

P.(k) = the steady-state probability that there are
k units at queue i,

b;;(n) = the probability that » units are blocked
by queue j including one at queue i, j =
2,...,M,i€F,

«;;(k) = the conditional probability that, upon serv-
ice completion at server /, a unit that has
queue j as its destination sees k units at
queuej,j=2,...,M,i€F;,

f; = the probability {ith queue is full}.

2.3. Analysis of the Model

2.3.1. Analysis Given Effective Arrival Rates and
Expected Clearance Times

For the moment, let us assume that we know the
effective arrival rates A\}; and the expected clearance
time E(7;) for each queue. Then queue 1 can be
analyzed by using an M/M/1/N, model, with occu-
pancy probabilities

L (L =p)p) .
P1(1)=———1_p,’vl+l‘, j=0,1,..., N, (1)
1

where p, = M\ E(T)). The probability that queue 1 is
full is

Ji = Pu(NY). ()

It is more difficult to analyze queues that have directly
connected upstream queues. In order to obtain the
occupancy and blocking probabilities of such queues,
we use the following procedure, developed in Lee and
Pollock for merge queues.

Consider queue j, which has k; directly connected
upstream queues. When queue j is not blocking, define
its state to be the number of units in queue j. If queue
J is blocking, the state is defined to be (N; + n, v),
n=1, ...,k where N; + n represents the number of
units in queue j, including the ones blocked by queue
J, and v is the n-component vector that represents the
order of units which are being blocked. To obtain the
blocking probability b;;(n), we must find the occu-
pancy probabilities prob. {S; = N; + n, v} for each
ordered state. Unfortunately, these occupancy proba-
bilities can be obtained only by solving the original
problem via the very large set of steady-state balance
equations. However, as shown in Lee and Pollock, we
can obtain these occupancy probabilities in terms of
P;(N; + n) by considering, for each queue in isolation,
an equivalent aggregated state space, and its associated
simple birth-and-death equations. The aggregated
state is the number of units in queue j, disregarding
the order of units being blocked, so that blocking
states which have the same number of units are aggre-
gated into one state. Let X,—(i ) denote the arrival rate
to aggregated state i + 1 from aggregated state i. The
following theorems allow us to compute appropriate
values for the Xj(i), and to find occupancy probabili-
ties for the original states. Proofs of these theorems
are not presented; they are similar to those in Lee and
Pollock, with the modest extension that the network
here has external arrivals to queue j.

Theorem 1. The occupancy probabilities P;(i), i = 1,
2, ..., N; + k; for the aggregated states of (isolated)
queue j are equivalent to those obtained by using the
original states of (isolated) queue j if the arrival rates
to the aggregated states are

N@) =2} fori=0,...,N—1 (3a)

X;(M+i)=(’%)3’—“'f fori=0,...,k—1 (3b)
i,Jj

where

A=Y AL+ N

keF;

Q. ; = sum of all i-tuplet products
Jrom set {\}: v € F}

Q,; = 1.
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For example, if F, = {1, 2, 3}, then k, = 3 and
Qoa = ATAE + AN + A2,

Q4 = AT,

Equation (3a) takes into account the fact that the
nonblocking aggregate states 0, 1, ..., N; — 1 are
identical to the original states. Each state sees, under
Assumption a, an arrival rate that is the sum of the
effective rates from upstream queues and external
arrivals. Equation (3b) produces an appropriately
weighted combination of effective-arrival rates for the
aggregated blocking states N; + n, n = 0, 1,

k; — 1. This in turn produces, under Assumption a,
correct marginal probabilities for the aggregated
blocking states.

From Theorem 1, and Assumptions a and b, the
occupancy probability P;(i) for the aggregate states
can be found as

P,(i) = mmH*“ D ioi2,.. N4k (4a)
u

Nitk;

S P =1 (4b)

i=0

where u) = 1/E(T;).

Note that (4a), which is based on Assumpiion a,
requires that in our approximation the ratio of suc-
cessive marginal probabilities P;(i + 1)/P;(i) is con-
stant for the nonblocking states i =0, 1,..., N;— 1.

Since the buffer space of each queue is augmented
by the number of upstream queues directly connected
to it, the probability that queue j is full is

K

fi= 2 BN +n). )

Once we obtain the occupancy probabilities of the
aggregated states, we can find the occupancy proba-
bilities of the original states by the following theorem.

Theorem 2. The relationship between the occupancy
probabilities of the original blocking states and those
of aggregated blocking states is

ITi=1 AY

BN, + 1y i i) = S '*’P(N+n)

forn=1,...,k. (6)
2.3.2. Finding Effective Expected Clearance
Times

Since we have values of P;(N; + n, i, . .. i,) from (6),
we can obtain b;;(n), the probability {# units are

blocked by queue j including one at queue i}, by
adding up the probabilities of the different orderings
by which queue j is full and blocking # units including
one at queue

bjny= % P(N;+n i ...i0).

i€ {iy...ip}

Using Theorem 2, this gives

i Qn— 1
bi;(n) = ’Q—“\ P,(N; + n),

n=1,...,k, i€F (1)
where
Q-1 = sum of all (n — 1)-tuplet products
from the set {\¥: v € Fj, v # i}.

From b,;(n), we can compute the conditional prob-
ability «;;(k) that, upon service completion at server
i, a unit which has queue j as its destination queue
sees k units at queue j. From Assumption c in Section
2.1 and the fact that a unit cannot be served, and
therefore cannot have completed service, at queue i if
queue i is blocked by queue j, «;;(N; + n) is the
conditional probability that there are N, + » units at
queue j given that queue i is not blocked by queue ;.
Since the probability that queue i is blocked by queue
jis S, by(n)

PN, + 1) = by(n)
I = S5t biy(m)
n=0,....,k—1, i€F (8)

Ol,'j(]Vj + n) =

where b;;(0) is defined to be 0. Using this value of
a;;(N; + n), we can obtain the expected clearance time
at queue i given that queue j is tuc destination from

—1

E(Ti|j)=—+ 20 (n + Da;(N; + n)E(T;). ®)
The first term in (9) is the expected service time at
queue i. The second term is the expected delay due to
blocking. If a unit whose destination is queue j sees n
other units blocked by queue j at the instant of its
service completion at queue i, it must wait # (inde-
pendent) clearance times plus one residual clearance
time at queue j before it feeds into queue J.

Since r;; is the probability that queue j will be the
destination queue, the unconditional expected clear-
ance time for queue i is

E(T) = X rE(Til)). (10a)

JEB;
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If queue i has no directly connected downstream
queues, i.e., B; = &, E(T;) simply becomes

E(T)) = 1/p. (10b)

2.3.3. Finding the Flow Rates

Once E(T)) is obtained, with A} already available,
the full probability f; can be calculated using
M/M/1/N; + k; analysis. Using these values of f;,
X, the flow rate from queue i to queue j, can be
calculated from the following relationships:

1. Since units can enter queue i/ from outside the
system only when queue i is not full, the flow rate
from outside is given by

X(),‘ = )\,(l "'f;). (11)
2. The total flow rate into queue /, denoted by X,
is
X,' = 2 Xk,‘ + .—XOi- (12)
kEF;
3. By the conservation of average flow, the flow

rate from queue i to queue j (or, when j = 0, outside
of the system) is given by

X,‘j = X,'r,‘j. (13)

2.3.4. Finding Updated Effective Arrival Rates

Using the values of b,;(n) and \;; obtained from (7)
and (13), respectively, updated values of A} can be
calculated from

kj
x?;(l -2 b,-,-(n)) = Nij, (14)

a conservation equation which yields the arrival rate
A} needed in order to produce the given value X;;.

2.3.5. Iterative Approach

We have just shown that values of b,;(n) and X;; can
be computed from A} and E(T;); conversely, given
b;j(n) and \,;, updated values of \}; and E(7;) can be
computed: This is the basis for an iterative approach
to finding performance measures of interest. In partic-
ular, we are now in a position to describe an iterative
procedure which produces the occupancy probabilities
for each queue. Each iteration consists of two sets of
calculations: The effective arrival rates \}; are calcu-
lated in forward order and occupancy probabilities
and E(T;|j) are calculated in backward order.

If external arrivals occur at only the first queue,
only a single set of calculations is needed. However, if
more than one queue has external arrivals, a two-way

analysis is unavoidable since the value of f; changes.
Details are in the algorithm described below, but, in
general, flow rates from queue to queue are produced
in a series of “forward” calculations, and occupancy
probabilities and expected clearance times are found
in a series of “backward” calculations. At the end of
the backward analysis, a convergence condition check
is made on the values of E(T;). If convergence does
not occur, another iteration is performed.

Note that, in the forward analysis, occupancy prob-
abilities of disaggregated states are not obtained, since
the only occupancy probability computed is f; from
(3) and (4). Thus, the computational effort of the two-
way analysis is not critically increased over that
needed for the one-way analysis.

2.4. Approximation Algorithm

The analysis above is incorporated into the following
iterative algorithm to obtain an approximate solution
to the system’s steady-state probabilities.

Step 0. (Setup). Set the values of \;, u;, N; for i =
..., M.
Step 1. (Initialization—the conditions here are as if
all the queues are unblocked)
Set E(T;) = 1/u;fori=1,..., M, p, = NE(T)).
Find f; using (1) and (2)
Set ;= M\ (1 = f)
Find X, using (13) for all j € B,
Set \f,;=X,, forallj € B,
Fori=2,M—1do
begin
find X, (n) using (3)
find P;(n) using (4)
find f; using (5)
find o, using (11)
find X; using (12)
find X, using (13) for all j € B;
set \} =\ for all j € B;
end
Step 2. (Backward analysis—find E(7;|;) and the
occupancy probabilities for each queue)
Forj= M, 2, —1 do
begin
find E(7}) using (10)
find X;(n) using (3) for n =0, ..., N;+ k; — 1
find P;(n) using (4) forn =0, ..., N, + k;
find b;;(n) using (7) for all i € F;
find o;;(N; + n) using (8) for all i € F;
find E(T;|j) using (9) for i € F;
end
Find E(7)) using (10)



1128 / LEee anD PoLLock

Step 3. (Convergence check)
If max;|updated E(7;) — E(7;)| < e go to Step 4.
Else, go to Step 4.
Step 4. (Forward analysis—find A}, for each queue)
Set p; = ME(T)
Find f; using (1) and (2)
Set A; = M (1 —f)
Find X, using (13) for all j € B,
Find A}, using (14) for all j € B,
Fori=2,M—1do
begin
find X;(r) using (3)
find P;(n) using (4)
find f; using (5)
find Xo; using (11)
find X; using (12)
find X\;; using (13) for all j € B,
find A} using (14) for all j € B;
end
Go to Step 2.
Step 5. (Calculate occupancy probabilities)
For queue 2 through M, these have already been
obtained in Step 2. For queue 1, find P;(»n) using (1)
forn=0,...,N,.
Step 6. Stop.

If external arrivals occur only at the first queue, the
algorithm becomes simplified because all X;; are com-
pletely determined by f; which is obtained at the end
of the backward analysis. Thus, in this case, (3), (4),
(5)and (11) in Steps 1 and 4 are not used.

3. COMPUTATIONAL RESULTS

In order to test the accuracy of our approximation
method, the algorithm was implemented on an
IBM 3090-400 and tested on a variety of problems.
Tables I-IX give comparisons with three- to eight-
node network problems in the literature, all of which
have only one queue with external arrivals. Tables X
and XI give comparisons for the cases that have
external arrivals at more than one queue. In those
cases where exact solutions have not been obtained,
we use simulation results. In all cases the convergence
criterion of Step 3 was ¢ = 0.00001.

Table I gives comparisons for the triangular network
of Figure 2, as reported in Takahashi et al. (1980) and
Altiok and Perros (1987). Arrivals are at queue 1 with
rate 1, and every queue has a buffer of size one. The
routing probabilities are 7o = 0, 1, = 713 = 0.5 and
r3 = 1. Comparisons are based on P;(¥N;), which
determines the throughput of the system because other
queues do not have external arrivals. As seen in the

Table 1
Approximations to P, (V,) from Takahashi et al.,
Altiok and Perros, and the New Algorithm

Altiok
and
M M2 M3 Exact Perros  Takahashi New
1 1.1 1.2 0.55963 0.54698 0.58669 0.56301
1 12 1.4 0.54634 0.53736 0.57344 0.55020
1 13 1.6 0.53681 0.53049 0.56324 0.54094
1 14 1.8 0.52980 0.52541 0.55538 0.53404
1 1.5 2.0 0.52451 0.52153 0.54904 0.52876
1 1.6 22 0.52043 0.51850 0.54398 0.52462
1 1.7 24 051724 0.51608 0.53975 0.52133
1 1.8 2.6 0.51469 0.51411 0.53619 0.51866
1 19 28 051264 0.51250 0.53318 0.51646
1 20 3.0 05109 051115 0.53058 0.51464

Figure 2. The three-node network.

Figure 3. The eight-node network topology (the
arrows indicate nonzero flows).

table, our method performs better than Takahashi’s
and is comparable with Altiok and Perros’ method.
Also note that Altiok and Perros’ method underesti-
mates P,(N,), the probability that queue 1 is full, if
the service rates are balanced and low (e.g., u = 1, 1.1,
1.2) and overestimates it if the service rates are unbal-
anced and high (e.g., u = 1, 2, 3). This pattern suggests
that it might have a larger error for very high or low
service rates, even though in the intermediate range
shown their method is accurate. On the other hand,
our method appears to be more robust in that it shows
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Table 1I
Summary of Comparisons With the Approximations of Altiok and Perros, and Perros and Snyder
Network Altiok Perros
Configuration Measures” and Perros and Snyder New
Avg. abs. dev. (P) 0.0095 0.0082 0.0066
Max. abs. dev. (P) 0.0322 0.0201 0.0152
3-node network Avg, rel. err. (P) 0.0545 0.0547 0.0311
(ave. of 9 problems) Max. rel. err. (P) 0.1991 0.2132 0.1019
Avg. rel. err. (L) 0.050 0.047 0.028
Avg. abs. dev. (P) 0.0213 0.0198 0.0135
4-node network Max. abs. dev. (P) 0.0442 0.0442 0.0257
Avg. rel. err. (P) 0.0679 0.0638 0.0433
(avg. of 4 problems) Max. rel. err. (P) 0.1691 0.1401 0.1045
Avg. rel. err. (L) 0.057 0.060 0.035
Avg. abs. dev. (P) - 0.014 0.007
Max. abs. dev. (P) — 0.043 0.020
8-node network Avg. rel. err. (P) b 0.079 0.045
(ave. of 10 problems) Max. rel. err. (P) — 0.338 0.229
Avg. rel. err. (L) —* 0.055 0.035

“ P represents the marginal occupancy probability and L represents the expected queue length.

® Not available due to memory constraints.

a consistent pattern of overestimating P,(V,) for all
explored service rates, by fairly small deviations, i.e.,
0.004 — 0.005 in absolute error.

The new approximation algorithm was also tested
for nine other three-node network problems, as well
as the four four-node network problems and ten eight-
node network problems analyzed in Altiok and Perros
(1987) and Perros and Snyder (1986). Figures 1, 2 and
3 show the topologies of these networks. Tables III-
IX present some numerical results selected from these
problems, showing the average (and maximum) abso-
lute deviations and average (and maximum) relative
errors for the occupancy probabilities and average
relative errors for the expected queue lengths with
respect to exact or simulated values. Since Altiok and
Perros’ algorithm cannot solve the eight-node network
due to memory limitations, we compare our results in
this case with only those of Perros and Snyder’s.

Table II is a summary of the comparisons with
Altiok and Perros’ and Perros and Snyder’s for the
averages of nine three-node network problems, four
four-node network problems and ten eight-node net-
work problems, for the various performance measures
in Tables III-IX. As can be seen, our algorithm gives
better results in both average (maximum) absolute
deviation and average (maximum) relative error. Note
that, while Perros and Snyder’s algorithm is inaccurate
if the first queue has infinite buffers (see, for example,

Table III
Comparisons With the Approximations of Altiok
and Perros, and Perros and Snyder for a
Three-Node Network

Altiok Perros

and and
Measures* Exact Perros Snyder New
P,(0) 0.1078  0.1261 0.1248  0.1048
P,(1) 0.0946  0.1096  0.1111 0.0938
P,(2) 0.0836  0.0956  0.0961 0.0840
P,(3) 0.0743  0.0835 0.0833  0.0752
P,(4) 0.0662  0.0731 0.0724  0.0673
P,(5) 0.0592  0.0639  0.0632  0.0603
L, 8.6170  6.9948  6.9683 8.5424
P,(0) 0.6231  0.6489  0.6490 0.6161
P,(1) 0.2401  0.2294  0.2311 0.2399
P,(2) 0.0919 0.0818 0.0805  0.0934
P,(3) 0.0449  0.0399  0.0395 0.0506
L, 0.5586  0.5127 0.5104  0.5784
P;(0) 0.4563  0.4560  0.4561 0.4560
Ps(1) 0.2684  0.2608  0.2608  0.2679
Ps(2) 0.2753  0.2832  0.2831 0.2761
L, 0.8190 0.8272 - 0.8271 0.8201

Avg. abs. deviation (P)  0.0102  0.0102 0.0018
Max. abs. deviation (P)  0.0258  0.0259  0.0070

Avg. rel. error (P) 0.0876  0.0880  0.0192
Makx. rel. error (P) 0.1698  0.1744 0.1269
Avg. rel. error (L) 0.093 0.096 0.015

%P represents the marginal occupancy probability and L
represents expected queue length; A\ = (0.8, 0, 0), u =
(1, 1, 1), N= (o, 3, 2); rio = 0.2, ri = 0.4, ri3 = 0.4, rjo = 0.3,
r; = 0.7; CPU time = 0.001 second.
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Table IV
Comparisons With the Approximations of Altiok
and Perros, and Perros and Snyder for a
Three-Node Network

Altiok Perros Table VI
and and Comparisons With the Approximations of Perros
Measures® Exact  Perros  Snyder  New and Snyder for an Eight-Node Network
P,(0) 0.2154 0.2142 0.2135 0.2092 Perros
P,(1) 0.7846  0.7858 0.7865 0.7909 and
L 0.7846  0.7858  0.7865  0.7909 Measures® Simulation Snyder New
P»(0) 0.7051 0.7231 0.7241 0.6968 P,(0) 0.099 0.262 0.092
Py(1) 0.2949  0.2770  0.2759 0.3032 P,(1) 0.071 0.191 0.083
L, 0.2949  0.2770 0.2759 0.3032 P,(2) 0.056 0.129 0.076
P;(0) 0.6123  0.6144 0.6158 0.6235 P.(3) 0.048 0.090 0.069
Py(1) 0.3877 0.3856  0.3842 0.3765 P,(4) 0.041 0.065 0.062
L, 0.3877 0.3856 0.3842 0.3765 P,(5) 0.037 0.048 0.057
Avg. abs. deviation (P)  0.0071  0.0081  0.0086 L, 17.17 14.39 9.92
Max. abs. deviation (P)  0.0180  0.0190  0.0112 P,(0) 0.614 0.656 0.597
Avg. rel. error (P) 0.0170  0.0196  0.0207 Py(1) 0.235 0.233 0.252
Max. rel. error (P) 0.0607  0.0644  0.0289 P,(2) 0.151 0.110  0.151
Avg. rel. error (L) 0.023 0.025 0.022 L, 0.537 0.454 0.553
- . P3(0) 0.607 0.656 0.599
“P represents the marginal occupancy probability and L Py(1) 0.244 0.233 0.251
represents the expected queue length; A = (3.0, 0, 0), u = P,(2) 0.149 0.111 0.150
(1, 1, l),N=(l, l, 1); r10=0.2, r,2=0.4, r13=0.4, r20=0.5, L3 0.542 0.455 0.551
r3 = 0.5; CPU time = 0.002 second. P4(0) 0.566 0.618 0.560
P.(1) 0.240 0.239 0.255
P4(2) 0.195 0.143 0.186
L, 0.629 0.526 0.626
Table V P5(0) 0.461 0.600  0.420
Comparisons With the Approximations of Altiok Ps(1) 0.262 0250 0277
and Perros, and Perros and Snyder for a Z(Z) g'g; g' égg g‘ggg
Three-Node Network P4(0) 0.493 0.595  0.484
Altiok Perros Ps(1) 0.282 0.249 0.266
and and Ps(2) 0.224 0.156 0.249
Measures” Exact Perros Snyder New Ls 0.731 0.561 0.765
P,(0) 0.1560  0.1722  0.1702  0.1516 P+(0) 0.405 0471 0414
P,(1) 0.1297  0.1420  0.1440  0.1287 Pa(1) 0273 0273 0.263
Py(2) 0.1085 0.1175  0.1178  0.1091 P2(2) 0.322 0256 0.323
P,(3) 0.0914  0.0973  0.0967  0.0926 Ly 0.917 0.785 0909
P\(4) 00772 0.0806  0.0797  0.0786 Py(0) 0.202 0200 0.200
Py(5) 0.0654  0.0668 0.0659  0.0666 Py(1) 0.189 0177 0.199
L, 56100 4.8348 57497  5.5944 Py(2) 0.609 0.623 0601
P2(0) 0.6557  0.6744  0.6745  0.6473 Ls 1.407 1423 1401
P,(1) 0.2349  0.2246 0.2259 0.2357 Avg. abs. deviation (P) 0.050 0.013
P,(2) 0.1094 0.1010 0.0997 0.1170 Max. abs. deviation (P) 0.163 0.041
L, 0.4537 0.4266 0.4252 0.4697 Avg. rel. error (P) 0.348 0.108
P5(0) 0.4901 0.4900  0.4900 0.4900 Max. rel. error (P) 1.690 0.541
Ps(1) 0.2667  0.2600  0.2600 0.2662 Avg. rel. error (L) 0.170 0.077
P3(2) 0.2431 0.2500 0.2500 0.2438 B ; -
L, 07529  0.7600  0.7599 0.7538 P represents the marginal occupancy probability and L
represents the expected queue length; A = (5, 0,0, 0, 0, 0, 0, 0),
Avg. abs. deviation (P)  0.0083  0.0081 0.0023 w=04,1,1,2,2,2,2,35;N=(»2,2,2,2,2,2, 2) ro=
Max. abs. deviation (P)  0.0187 0.0188 0.0084 0.0, 12 =0.2,r3=0.2, 114 = 0.2, 117 = 0.2, 115 = 0.2; s = 0.0,
Avg. rel. error (P) 0.0512 0.0495 0.0151 Faa= 0.5, 126 = 0.5, 130 = 0.0, r3a = 0.5, r37 = 0.5; ra0 = 0.0, ras =
Max. rel. error (P) 0.1038 0.1103 0.0695 1.0, rso = 0.0, 156 = 0.3, rs; = 0.3, rss = 0.4; reo = 0.0, reg = 1.0,
Avg. rel. error (L) 0.069 0.032 0.013 F10 = 0.0, rs5 = 1.0, rgo = 1.0; CPU time = 0.005 second.

“P represents the marginal occupancy probability and L
represents the expected queue length; A = (1.5, 0, 0), u =
(2, 2, 2), N = (00, 2, 2), Fio = 02, Fi2 = 04, Vi3 = 04, Fao = 03,
r3 = 0.7; CPU time = 0.002 second.
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Comparisons With the Approximations of Perros
and Snyder for an Eight-Node Network

Perros
and
. . Table VII . . Measures® Simulation Snyder New
Comparisons With the Approximations of Perros 0 0456 e e
. . . . .

and Snyder for an Eight-Node Network PA(1) 0.947 0250 0.250
Perros P.(2) 0.127 0.127 0.129
) ) and P,(3) 0.065 0.065 0.067
Measures® Simulation Snyder New P.(4) 0.033 0.034 0.035
P,(0) 0.321 0.323 0.299 Pi(5) 0.019 0.017 0.018
P,(1) 0.313 0.335 0.332 L, 1.088 1.055 1.076
P,(2) 0.366 0.342 0.369 P,(0) 0.795 0.799 0.799
L, 1.044 1.019 1.070 Py(1) 0.162 0.161 0.161
P,(0) 0.601 0.593 0.590 P,(2) 0.034 0.032 0.033
Py(1) 0.254 0.254 0.254 P,(3) 0.009 0.008 0.008
P,(2) 0.146 0.153 0.156 L, 0.256 0.249 0.250
L, 0.545 0.560 0.566 P5(0) 0.790 0.797 0.791
P1(0) 0.584 0.587 0.570 Pi(1) 0.166 0.162 0.165
P;i(1) 0.261 0.256 0.259 P3(2) 0.033 0.033 0.035
P;(2) 0.155 0.157 0.171 P;(3) 0.011 0.008 0.009
L, 0.571 0.571 0.602 L; 0.265 0.252 0.261
P4(0) 0.564 0.551 0.560 P4(0) 0.798 0.798 0.798
P.(1) 0.258 0.253 0.255 P,(1) 0.161 0.161, 0.161
P.(2) 0.178 0.196 0.185 P4(2) 0.032 0.032 0.032
L, 0.614 0.645 0.625 P4(3) 0.008 0.008 0.008
P;5(0) 0.557 0.579 0.548 L, 0.251 0.251 0.250
Ps(1) 0.266 0.258 0.264 Ps(0) 0.789 0.796 0.789
Ps(2) 0.177 0.163 0.188 Ps(1) 0.166 0.163 0.167
L 0.620 0.585 0.640 Ps(2) 0.036 0.033 0.035
Ps(0) 0.750 0.768 0.749 Ps(3) 0.010 0.009 0.009
Ps(1) 0.195 0.180 0.190 Ls 0.268 0.255 0.265
Ps(2) 0.056 0.053 0.062 P(0) 0.775 0.780 0.779
L 0.307 0.286 0.313 Ps(1) 0.173 0.172 0.172
P,(0) 0.539 0.529 0.533 Ps(2) 0.040 0.038 0.038
P;(1) 0.270 0.254 0.259 Ps(3) 0.012 0.011 0.011
P,(2) 0.191 0.216 0.208 Ly 0.289 0.279 0.280
L, 0.652 0.687 0.675 P;(0) 0.585 0.579 0.578
P;(0) 0.457 0.436 0.459 P;(1) 0.245 0.245 0.247
Pg(1) 0.262 0.250 0.262 P;(2) 0.102 0.103 0.105
Ps(2) 0.281 0.314 0.279 P;(3) 0.069 0.073 0.070
Lg 0.824 0.878 0.820 L, 0.654 0.670 0.667
Avg, abs. deviation (P) 0013 0.008 Ps(0) 0.753 0750 - 0750
.. Ps(1) 0.185 0.188 0.188

Max. abs. deviation (P) 0.033 0.022
Ps(2) 0.046 0.047 0.047

Avg. rel. error (P) 0.046 0.033
Ps(3) 0.015 0.016 0.015
Max. rel. error (P) 0.131 0.107 I 0323 0.328 0.328

Avg. rel. error (L) 0.043 0.029 8 : : :

“P represents the marginal occupancy probability and L &\:;.ags'.(:fx?;:g;(g) 8883 gggg
represents the expected queue length; A = (3, 0, 0, 0, 0, 0, 0, 0), Ave. rel. error (P) 0.035 0.028
w=04,1,1,2,2,2,2,35;,N=(2,2,2,2,2,2,2, 2); routing is M g. re. : ’

. . ax. rel. error (P) 0.273 0.181
the same as in Table VI; CPU time = 0.006 second. Ave. rel. error (L) 0.029 0016

“P represents the marginal occupancy probability and L
represents the expected queue length; A = (1,0, 0, 0, 0, 0, 0, 0),
w=(02,1,1,2,211,4; N=(»3,3,3,3,3, 3, 3); routing is
the same as in Table VI; CPU time = 0.008 second.
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Table IX
Comparisons With the Approximations of Perros
and Snyder for an Eight-Node Network

Perros

Measures® Simulation and Snyder New
P,(0) 0.339 0.403 0.348
P,(1) 0.204 0.239 0.227
P,(2) 0.129 0.135 0.148
P,(3) 0.087 0.079 0.096
P,(4) 0.061 0.047 0.063
Pi(5) 0.045 0.030 0.041
L, 2.458 2.194 1.874
P,(0) 0.763 0.788 0.764
P, (1) 0.180 0.168 0.182
P,(2) 0.057 0.044 0.054
L, 0.294 0.256 0.290
P5(0) 0.750 0.782 0.742
Pi(1) 0.189 0.172 0.194
P;(2) 0.061 0.046 0.064
L, 0.312 0.264 0.322
P4(0) 0.528 0.547 0.533
P4(1) 0.253 0.254 0.259
P,(2) 0.219 0.200 0.208
L, 0.692 0.653 0.675
P5(0) 0.535 0.579 0.532
Ps(1) 0.263 0.258 0.267
Ps(2) 0.202 0.164 0.201
Ls 0.668 0.585 0.669
Ps(0) 0.741 0.770 0.747
Ps(1) 0.194 0.178 0.191
Ps(2) 0.065 0.052 0.063
L 0.323 0.282 0.316
P,(0) 0.525 0.543 0.526
P;(1) 0.261 0.253 0.260
P,(2) 0.215 0.204 0.214
L, 0.690 0.661 0.689
Ps(0) 0.497 0.500 0.500
Pg(1) 0.257 0.252 0.261
Ps(2) 0.245 0.248 0.239
Lg 0.748 0.748 0.739
Avg. abs. deviation (P) 0.018 0.005
Max. abs. deviation (P) 0.064 0.023
Avg. rel. error (P) 0.099 0.033
Max. rel. error (P) 0.333 0.147
Avg. rel. error (L) 0.092 0.043

“P represents the marginal occupancy probability and L
represents the expected queue length; A = (1, 0, 0, 0, 0, 0, 0, 0),
w=1(4,2,2,2,2,2,2,4); N= (0, 2,2,2,2,2, 2, 2); routing is
the same as in Table VI; CPU time = 0.011 second.

Table X
Comparisons With the Simulation for the Cases
With More Than One External Arrivals:
Three-Node Network

Simu- Rel.

Case Measures lation New  Error
N=(5,4,3) P,(5) 0.558 0.558 0.000
A=(2,0.2,0.1) L, 4246 4241 0.001
w=(1,1,1) P,(4) 0.074 0.078 0.054
L, 1.150 1.156 0.005

P;(3) 0.279 0.282 0.011

Ls 1.441 1.452 0.008

N=(2,2,3) P,(2) 0.269 0.272 0.011
A=(1.2,0.3,0.2) L, 0.855 0.873 0.021
u=(2,151) P,(2) 0.193  0.206 0.067
L, 0.679 0.698 0.028

P3(3) 0.374 0.381 0.019

L, 1.733  1.741 0.005

N = (, 3, 3) L, 2462 2.386 0.031
A=(1.2,0.8,0.5) P,(3) 0.176  0.177 0.006
wu=(2,2,2) L, 1.189 1.183 0.005
Ps(3) 0.312  0.306 0.019

L, 1.557 1.544 0.008

N = (x, 2, 3) L, 4.284 4228 0.013
A= (1.5, 1.0, 0.5) P,(2) 0.386 0.395 0.023
u=(2.5,2.0,20) L, 1.080 1.089 0.008
Ps(3) 0.386 0.378 0.021

L, 1.758 1.741 0.010

Fiop = Frpi3 = 035, Fio = 03, Fa3 = 065, Fo = 035, CPU
time less than 0.002 second.

Tables III, V, VI and IX), the new algorithm appears
to work quite well for these cases as well.

Finally, Tables X and XI show the performance of
our algorithm based on P;(%;) and L; (mean queue
length at queue i) when there are external arrivals to
more than one node. These results are only compared
to simulation analysis because there are no other
reported results in the literature, and an exact analysis
of even the simplest (3-node) configuration involves
precisely the onerous amount of computation that the
approximation method has been developed to avoid.
Note that values of P;(N;) fori =1, ..., k completely
determine the throughput for queue k. As we see in
Tables X and XI, external arrivals to more than one
node do not seem to degrade the performance of our
algorithm.

It is important to state that we have not proven the
convergence of our algorithm. However, in all of the
problems we have tested to date, we have not found
any which did not converge. The maximum number
of iterations needed for convergence was 11; in most
cases convergence to one part in 10° occurred within
4-7 iterations. From a practical point of view, note
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Table XI
Comparisons With the Simulation for the Cases
With More Than One External Arrivals:
Four-Node Network

Simu- Rel.

Case Measures lation New  Error
N=(2,2,2,3) P,(2) 0.374 0.385 0.029
A=(1,0.2,0.1, 0.05) L, 1.080 1.100 0.019
w=(1,1,1,1) P,(2) 0.155 0.163 0.052
L, 0.582  0.600 0.031

Pi(2) 0.112 0.120 0.071

L, 0.475 0.485 0.021

P.(3) 0.269 0.276 0.026

Ly 1.408 1.416 0.006

N=(»,2,2,2) L, 5.184 4.888 0.057
A=(1.2,0.2,0.1,0.05) P»(2) 0.220 0.231 0.050
w=(2, 1.5, 1.5, 1.5) L, 0.731 0.747 0.022
P3(2) 0.183 0.197 0.077

L, 0.642 0.664 0.034

P,(2) 0495 0.497 0.004

L, 1.222  1.229 0.006

N=(,2,2,2) L, 2,612 2,610 0.001
A=(1.2,0.3,0.2,0.1) P,(2) 0.145 0.155 0.069
nw=2,2,2,2) L, 0.559 0.578 0.034
Pi(2) 0.126  0.134 0.063

L, 0.506 0.522 0.032

P.(2) 0.381 0.392 0.029

Ly 1.019 1.043 0.024

r2=r13=0.3, ria=r0=0.2; 153 =0.05, 1,4 = 0.8, r50 = 0.15;
r3s = 0.85, r3 = 0.15; CPU time less than 0.002 second.

that the maximum CPU time required for an eight-
node network problem was 0.008 second. We also do
not have a priori bounds on the accuracy of the
method; these are currently being explored.

4. CONCLUSIONS

We have presented a new approximate algorithm for
analyzing a general configuration of an open queueing
network with blocking. Besides being accurate and
fast, our algorithm has the following advantages over
those previously reported.

Generality. It can solve not only networks with a large
number of servers, but also general topologies includ-
ing external arrivals at more than one queue.

Robustness. It yields accurate results regardless of
whether the queues with external arrivals have infinite
buffers or not, or whether the service rates are high or
low.

Simplicity. There are no numerical procedures
involving the solution of simultaneous nonlinear
equations or fixed point problems.

Considering the generality, robustness, simplicity
and accuracy of the algorithm, and its significant
improvement over previous methods, it holds promise
to be a useful tool in the study of networks of queues.
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